초록
본 연구에서는 수정이방성복원 후 지역확장분할 영상분류의 분류오류를 Markov Random Field(MRF) 기반 분류자를 사용하여 개선시킬 것을 제안하고 있다. 제안 접근법은 지역확장분할 분류에 의해 생성된 결과에서 분류오류의 발생 가능성이 높은 경계지역을 정의하고 경계지역내의 화소들에 대해 재분류를 수행하여 수정하는 것이다. 재분류를 위한 MRF 기반 분류자는 지역확장분할 분류에 의해 추정된 클래스 수와 클래스 특성 값을 기반으로 하여 분류를 수행하는 반복적인 기법이다. 모의자료에 대한 실험은 제안 기법이 분류 정확성을 향상시킴을 보여주었다 그러나 실제적으로 많은 탐사지역의 피복형태는 매우 복잡한 구조를 갖고 있으므로 일반적 MRF 기반 기법의 사용은 원격탐사 영상의 정확한 분석을 이끌어 내지 못할 수 있으므로 본 연구는 다중 분류자를 사용하는 다단계 경계지역 수정기법을 제안한다. 한반도의 실제 원격탐사 영상자료에 대한 적용결과는 다단계 기법의 효과성을 잘 보여주고 있다. 다단계 반복적 경계지역 내 분류수정은 분석지역에 존재하는 자세한 구조를 보존하는 한편 지역적 명확한 구분의 분류결과를 생성한다.
This paper proposes to improve the results of image classification with spatial region growing segmentation by using an MRF-based classifier. The proposed approach is to re-classify the pixels in the boundary area, which have high probability of having classification error. The MRF-based classifier performs iteratively classification using the class parameters estimated from the region growing segmentation scheme. The proposed method has been evaluated using simulated data, and the experiment shows that it improve the classification results. But, conventional MRF-based techniques may yield incorrect results of classification for remotely-sensed images acquired over the ground area where has complicated types of land-use. A multistage MRF-based iterative class-modification in boundary is proposed to alleviate difficulty in classifying intricate land-cover. It has applied to remotely-sensed images collected on the Korean peninsula. The results show that the multistage scheme can produce a spatially smooth class-map with a more distinctive configuration of the classes and also preserve detailed features in the map.