DOI QR코드

DOI QR Code

Optimum of Gamma Irradiation Dose for Rice-based Infant Foods with Improved Energy-density and Shelf-life

쌀기본 이유식의 에너지 밀도 및 저장성 증대를 위한 최적 감마선 조사 선량

  • 이유석 (한국원자력연구소 방사선식품생명공학기술개발) ;
  • 오상희 (한국원자력연구소 방사선식품생명공학기술개) ;
  • 이주운 (한국원자력연구소 방사선식품생명공학기술개) ;
  • 김장호 (한국원자력연구소 방사선식품생명공학기술개) ;
  • 김재훈 (한국원자력연구소 방사선식품생명공학기술개) ;
  • 김관수 (그린피아기술(주) ;
  • 김왕근 (과학기술부 원력정책) ;
  • 변명우 (한국원자력연구소 방사선식품생명공학기술개발)
  • Published : 2004.06.01

Abstract

This study was carried out to determine the optimum irradiation dose for infant foods with improved energy-density and extend shelf-life using gamma irradiation. Rice and rice porridge were irradiated at 0, 2.5, 5, 7.5, 10, 15 and 20 kGy, and rheological characteristics and total plate count of porridge were evaluated for 6 weeks. Rice and rice porridge at 2.5 kGy dose reduced the viscosity with 22% and 98%, respectively. The result of total aerobic bacteria of non-irradiated rice porridge was 6 log CFU/g and that of 2.5 kGy irradiated rice porridge on 2 weeks storage was 3 log CFU/g, while that of 7.5 kGy irradiated sample was not detected even at the end of storage. Irradiation on rice-based porridge was proper to enhance the total solid in inverse proportion to considering viscosity and extend shelf-life. Gamma irradiation was effective technology in enhancing calorie value of porridge due to reduction of viscosity.

본 연구에서는 방사선 조사 기술을 이용하여 에너지 밀도가 증대되고 미생물학적으로 안전한 이유식의 공급을 위해 쌀미음의 적절한 방사선 조사 시기 및 선량을 결정하였다. 쌀과 쌀미음에 각각 0, 2.5, 5, 7.5, 10, 15, 20 kGy로 감마선 조사한 후 물성특성과 총균수를 측정하였다. 쌀과 쌀미음에 2.5 kGy선량으로 감마선 조사하는 경우 점성이 각각 22%, 98%로 감소하였다. 저장 2주째 비조사구의 총균수는 6 log CFU/g이었으나, 2.5 kGy 조사구의 경우 3 log CFU/g 수준을 유지하였으며 7.5 kGy 조사구의 경우 저장기간 동안 어떠한 미생물도 검출되지 않았다. 따라서 총고형분 함량을 증대시키기 위해서는 점성저하와 미생물학적인 측면을 고려하여 쌀미음 상태에서 감마선 조사하는 것이 적절할 것으로 사료되며, 이유식의 에너지밀도를 증대시키기 위한 기술의 일환으로 감마선 조사 기술의 이용가능성을 시사하는 바이다.

Keywords

References

  1. Faulks RM, Bailey AL. 1990. Digestion of cooked starches from different food sources by porcine ${\alpha}$-amylase. Food Chemistry 36: 191-203. https://doi.org/10.1016/0308-8146(90)90054-8
  2. Yook HS, Lee YS, Lee JW, Oh SH, Kim JH, Kim DS, Byun MW. 2004. Textural and sensory characteristics of gamma irradiated porridges. Korean J Soc Food Sci 33: 427-432. https://doi.org/10.3746/jkfn.2004.33.2.427
  3. Zhang M, Duan ZH, Huan YJ, Tao Q. 2003. Preparation tech nology for semi-fluid high-energy food. Journal of Food Engineering 59: 327-330. https://doi.org/10.1016/S0260-8774(02)00457-0
  4. Ngoddy PO, Nout MJR, Nche PF, van Zulichem J, Stolp W. 1994. Optimization strategies for weaning formula development for tropical areas. In Food Science and Technology: Challenges for Africa towards the year 2000. Marovatsanga LT, Taylor JRN, eds. CTA, Wageningen, p 191-214.
  5. Son JH, Chyun JH. 2001. Comparative analysis of satisfaction level on hospital foods in elderly and middle aged patients. Korean J Dietary Culture 16: 442-450.
  6. Min SH, Sohn KH, Lee YM. 1993. Recipes for the supplementary foods and monthly feeding plants for infants. Korean J Soc Food Sci 9: 312-316.
  7. Choi JC, Lee SW. 1992. Comparative studies on domestic weaning foods. Korean J Dairy Sci 14: 77-85.
  8. Min SH, Sohn KH, Yoon S. 1993. Development of the supplementary foods for infants using Korean foods. -Safety storage assay and sensory evaluation of the supplementary foods for infants-. Korean J Soc Food Sci 9: 105-108.
  9. Choi JS, Sohn KH. 1997. Physicochemical properties of modified rice powder for rice-based infant foods I. Thermalenzymatic treatment on rice powder. Korean J Dietary Culture 12: 375-382.
  10. Choi JS, Sohn KH. 1997. Physicochemical properties of modified rice powder for rice-based infant foods III. Acetylatedcross linkage treatment on rice powder. Korean J Dietary Culture 12: 469-475.
  11. Kim KO, Choi HJ. 1995. Optimization of the preparation of rice-based infant foods using freeze drying process. Korean J Food Sci Technol 27: 680-689.
  12. Ahn HJ, Yook HS, Rhee MS, Lee CH, Cho YJ, Byun MW. 2002. Application of ${\gamma}$-irradiation on breakdown of hazardous volatile N-notrosamines. J Food Sci 67: 596-599. https://doi.org/10.1111/j.1365-2621.2002.tb10644.x
  13. Lee JW, Kim JH, Yook HS, Kang KO, Lee SY, Hwang HJ, Byun MW. 2001. Effects of ${\gamma}$-irradiation on the allergenic and antigenic properties of milk proteins. J Food Prot 64: 272-276. https://doi.org/10.4315/0362-028X-64.2.272
  14. Byun MW, Lee KH, Kim DH, Kim JH, Yook HS, Ahn HJ. 2000. Effects of γ-irradiation on sensory qualities, microbiological and chemical properties of salted and fermented squid. J Food Prot 63: 934-939. https://doi.org/10.4315/0362-028X-63.7.934
  15. Duodu KG, Minnaar A, Taylor JRN. 1999. Effect of cooking and irradiation on the labile vitamins and antinutrient content of a traditional African sorghum porridge and spinach relish. Food Chemistry 66: 21-27. https://doi.org/10.1016/S0308-8146(98)00070-3
  16. Rombo GO, Taylor JRN, Minnaar A. 2001. Effect of irradiation, with and without cooking of maize and kidney bean flours, on porridge viscosity and in vitro digestibility. J Sci Food Agric 81: 497-502. https://doi.org/10.1002/jsfa.838
  17. Sokhey AS, Hanna MA. 1993. Properties of irradiated starches. Food Structure 12: 397-410.
  18. Kume T, Ito H, Soedarman H, Ishigaki I. 1989. Radiosensitivity of toxigenic Aspergillus isolated from spices and destruction of aflatoxins by gamma-irradiation. Int J Radiat Appl Inst 34: 973-978.
  19. Solberg M, Buckaler JJ, Chen CM, Schffner DW, O'Neill K, McDowell J, Post LS, Boderck M. 1990. Microbiological safety assurance system for foodservice facilities. Food Tech 44: 68-71.

Cited by

  1. Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density vol.77, pp.3, 2008, https://doi.org/10.1016/j.radphyschem.2007.06.003
  2. 감마선 조사 후 가속 저장된 분말수프의 이화학적 품질 특성 vol.35, pp.8, 2006, https://doi.org/10.3746/jkfn.2006.35.8.1031
  3. 쌀가루의 저장조건에 따른 자연균총의 생육특성 vol.36, pp.7, 2004, https://doi.org/10.3746/jkfn.2007.36.7.921