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Experiments on An Network Processor-based Intrusion Detection
Hyeong-Ju Kim'- Ik-Kyun Kim*'' - Dae-Chul Park'"

ABSTRACT

To help network intrusion detection systems(NIDSs) keep up with the demands of today’'s networks, that are the increasing network
throughput and amount of attacks, a radical new approach in hardware and software system architecture is required. In this paper, we propose
a Network Processor(NP) based In-Line mode NIDS that supports the packet payload inspection detecting the malicious behaviors, as well as
the packet filtering and the traffic metering. In particular, we separate the filtering and metering functions from the deep packet inspection
function using two-level searching scheme, thus the complicated and time-consuming operation of the deep packet inspection function does not
hinder or stop the basic operations of the In-line mode system. From a proto-type NP-based NIDS implemented at a PC platform with an x86
processor running Linux, two Gigabit Ethernet ports, and 2.5Gbps Agere PayloadPlus(APP) NP solution, the experiment results show that our
proposed scheme can reliably filter and meter the full traffic of two gigabit ports at the first level even though it can inspect the packet payload
up to 320 Mbps in real-time at the second level, which can be compared to the performance of general-purpose processor based inspection.
However, the simulation results show that the deep packet searching is also possible up to 2Gbps in wire speed when we adopt 10Gbps APP
solution.

71/ : HEQYI T2 MM (Network Processor), HERT & EX|IAIAR (Network Intrusion Detection System), PDU(Protocol Data

Unit)

1. Introduction

Network intrusion detection systems(NIDS) are an impor-
tant part of any network security architecture. As networks
become faster, there is an emerging need for security analysis
techniques that can keep up with the increased network
throughput. That is, technological enhancements of new
general-purpose processors and supplemental technologies

such as memory and interconnect subsystems are not ad-
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vancing with the same pace as network interface rates on
the Internet. As demand grew for even greater bandwidth,
fixed-hardware accelerators in form of Application—Specific
Integrated Circuits(ASIC) were introduced to try to provide
more processing power in their systems. Although they
solved the performance issue, in a very short period of time,
the closed architecture of such systems could not keep up
with another dimension of the problem - frequent standard
changes and new protocol and application requirements. Also,
hardware development cycles tended to be too slow to
accommodate them. The need for adaptability, differentiation,
and short time-to-market brought about the idea of using
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Application Specific Instruction-set Processors(ASIP) called
Network Processors(NP). NPs can be programmed easily
and quickly according to specific products and deployments
needs.

In this paper, we propose an in-line mode NIDS using APP
(Agere PayloadPlus) Network processors(NP) that supports
high-speed links up to Gigabits per second. In particular, we
implement an x86 processor based NIDS running Linux with
APP. In this prototype system, we adapt a two-level search-
ing scheme for guaranteeing fully the wire-speed intrusion
detection operation. We also illustrate the rule matching
algorithm for effective use of APP, and show the per-

formance.

2. Motivation

‘When most people think of network security, they think
“Firewall”. Firewalls are widely deployed as a first level of
protection in a multi-layer security architecture, primarily
acting as an access control device by permitting specific
protocols to pass between a set of source and destination
address. Integral to access policy enforcement, firewalls
usually inspect data packet headers to make flow decisions.
However, they do not inspect the entire content of the packet
and can’t detect or thwart malicious code embedded within
normal traffic. This deep packet processing which is the
original purpose of IDS relies on signature inspection and/or
behavior-based systems. So we believe that the IPS(Intru-
sion Prevention System), which is combined with firewall
and IDS systems, will be promise in near future. In this
paper, we note that IDS detects and filters the attacks, which
is the same function as IPS.

We can classify Firewalls into two categories - PC
server based and hardware accelerated firewalls - according
to the implementation techniques. Today, however, people
focus on the hardware accelerated firewalls due to the packet
handling throughput and the real-time analysis and response.
For instance, the Sapphire (also called Slammer) worm was
the fastest computer worm in history [1]. It is noted that the
worm infected more than 90 percent of vulnerable hosts
within 10 minutes. This is why we are interested in the
real-time analysis of input data stream.

There are several rule based NIDSs available today. Most
of these systems use one or more general purpose processors
running rule-based packet filtering software. Due to exhaus-
tive pattern detection algorithm, software system running on

single general—purpoée processor may not be able to inspect
all network traffic [3]. In order to identify the effectiveness
of rule based NIDS, we first review the background of Snort
[2] and its rules-based traffic collection engine, and evaluate
the performance of Snort from a network throughout point
of view. Then, in order to improve the performance of Snort,
we present the numerical results of alert detections from
Snort running on kernel not as an application level in terms
of offered attack loads and number of rules.

In order to overcome the limitations of rule based NIDS
running on general purpose processor, [3] have designed a
rule based pattern matching based on a parallel architecture
which is capable of processing over 2.88 gigabits per second
of network stream on an Altera EP20K series FGPA without
manual optimization. However, the design time for new
reconfiguration according to the updates to the rule set may
be unacceptable in service time. On the other hand, there are
some network processors, such as Intel IXP, IBM Power NP,
and Agere PayloadPlus NP, are available that support faster
network. In order to build an in-line mode NIDS for high-
speed networks, we use Agere PayloadPlus NPs, and show
the possibilities of NP based NIDS.

3. A Brief Review of APP

APP consists of three NPs(Network Processors), such as
FPP(Fast Patter Processor), RSP(Routing Switching Pro-
cessor), and ASI(Agere System Interface). The FPP accepts
a data stream through industry-standard POS-PHY/UTO-
PIA Level 3 interface. The FPP analyzes and classifies these
frames and cells, reassembles them into PDU(Protocol Data
Unit), then transmits the PDUs and their classification
conclusions to the RSP. The information provided by the FPP
is used by the RSP to assign the PDU to a queue that has
been programmed with QoS, CoS, and PDU modification
instructions. Internally, the RSP uses custom logic and three
programmable Very Large Instruction World(VLIW) com~
puter engines to process PDUs while maintaining a high
throughput. The processed traffic of the RSP is output on
a configurable 32-bit POS-PHY Level 3/UTOPIA Level 3
interface. The ASI provides a Peripheral Component Inter-
connect(PCI) bridge to a host processor for the FPP and the
RSP. It also provides programmable function processing and
state maintenénce for the FPP. For more detail information,
refer to {14-171.
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(Figure 1) Block Diagram of 2.5G PayloadPlus System

In PayloadPlus systems, processing tasks occur in one of
two domains, called the fast(wire-speed) path and the slow
path. The fast includes all tasks necessary for normal data
stream processing. The slow path includes tasks such as
exception handling, management, configuration, and updates.

The FPP is a pipelined, multi~threaded processor that
simultaneously analyzes and classifies 64 PDUs. Each PDU
is processed by a separate processing thread, called a context,
which keeps track of the blocks that compose the PDU. As
shown in (Figure 2), the operation of FPP is divided into two
passes - first and second passes. The first pass stores data
as 64-byte blocks and computes data offsets for each block,
creating a linked-list data structure that defines the reas-
sembled PDU. On the contrary, the second pass processes
the whole PDU, simultaneously performing pattern matching
and transmitting the conclusions of the pattern-matching
processes for that PDU.

Replay Blocks are simultaneously
inpu Queues written to the Context and
Framer Data Buffer

Second Pass Context

{Figure 2) First Pass and Second Pass Processing of FPP
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4. mplementation

41 Two Level Architecture for the In-Line Mode IDS

The IntruShield architecture proposed in [5] enables sensor
systems to capture network attacks in a number of ways :
Switched Port Analyzer and Hub Monitoring, Tap Mode,
In-Line Mode, and Port Clustering. The In-Line mode IDSs
sit in the data path with active traffic passing through them,
and prevent network attacks by dropping malicious traffic
in real-time. As noted in Section 2, we are interested in this
In-Line mode IDS using network processors.

(Figure 3) is a block diagram of our architecture. There
are three main blocks, such as general-purpose processor,
NP-1 Card, and NP-2 Card blocks. Particular, we adapt
two-level NP scheme to guarantee the gigabit 2-port wire-
speed operation. The NP-1 Card provides the filtering, flow
statistics, and sensing for the NP-2 Card with fully wire-
speed. It shows the logical view of three main functions of
NP-1 Card. The NP-2 provides the deep packet processing
by a signature inspection. The general purpose processor also
provides the deep packet processing by same signature and

heuristic analysis.

General Purpose Processor
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(Figure 3) Two-Level Architecture

The incoming packet data from gigabit MAC is passed to
the FPP through a 32-bit bus. Pre-Processing Engine records
the various flow statistics based on statistics conditions,
which is the full combinations of the IP head five-tuple
information (source and destination IP addresses, source and
destination port addresses, and Protocol Type). Blocking
Engine filters the incoming packets based on the blocking
rules, which are also the five-tuple combinations. Sensing
Engine copies the corresponding packet data based on the
five-tuple and TCP flags information, and sends them to the

NP-2 Card and general purpose processor using PCI bus.
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4.2 Rule Matching Algorithm

First of all, we note that the packet content matching is
performed at the first pass in FPP at NP-2. The first pass
processes data at the block level, which is 64-byte. Henpe,
the entire input packet stream is matched block-wised with
a given matching patterns, as shown in (Figure 3). For the
simple explanation, we assume that the maximum size of a
matching pattern S,, is less than block size S,, where S, is
64-byte. (Figure 4) shows the relationship between searching
point (SP) and input data stream and block boundary. Until
the SP is S,—S,,, the content pattern match is performed
every SP as shown in (Figure 5), where N, is the number
of matching patterns. When the SP reaches S,—S,,+1, the

SP7 SP2 SP(Sb-5m) SP SbSP(Sb+1)

NIy

Stream | )
1st block Si¢ 2nd block————1 3rd block

(Figure 4) The Relationship between Searching Points, Input
Data Stream, and Block Boundary
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(Figure 6) Example of Partial and Truncated Matching
Patterns

matching patterns are divided into two parts, partial and
truncated patterns as shown in (Figure 6). Theses two kinds
of patterns are generated at every SP until SP reaches the
end of boundary.

When the SP is between S;—S,+1 and S,—1, the
matched results for partial patterns are stored as a bit-wise
information of registers. As we can expect, the maximum
number of partial or truncated patterns is N, % (S, —1).
When the SP reaches at S, which is the starting point of
the next block, the pattern matching is performed with the
matching patterns (shown in (Figure 5)) as well as the
truncated patterns (shown in (Figure 6)). If the truncated
patterns are matched, then the corresponding bits of the
registers should be compared to check whether the
corresponding partial patterns were matched or not.

5. Evaluation

The set of experiments were pn'mari_ly aimed at evaluating
the effective of the two-level architecture based on network
processors. For these experiments, we used an industrial PC
platform running Linux and developed two kinds of circuit
board using 2.5Gbps APP solutions such as the FPP, the RSP
and the ASL Through the experiments, we especially focused
on the performance of deep packet inspection of the second
level NPM as well as general purpose processor and the
possibility of wire-speed operation of packet filtering and
traffic metering at the first level of NPM. The next section
presents the prototype . architecture and test environments,
and the section after that gives the corresponding results.
We also present some simulation results for the foundation
of further works.

(Figure 7) Board Design(Upper card : Line and main
processor interface, Lower card : Packet
classification, filtering and rate limiting)



In order to implement the proposed architecture in (Figure
3), we have developed two kinds of circuit board as shown
in (Figure 7). The LIM board is designed for interfacing two
gigabit Ethernet ports and providing an industry-standard
PCI interface by the ASI between a host processor at PC
and network processors. It also has a gigabit MAC chip for
Ethernet control and some management functions. These
functions include hardware configuration and exception
handling. In addition, the LIM board maintains the metering
information as discussed in <Table 2> and <Table 3>, which
must be accessed by some applications running at the host
processor. The ASI has a 64-bit, 66MHz PCI interface that
is a full master/slave implementation with DMA and inter-
rupt support.

The NPM board mainly consists of the FPP and the RSP
which classify and switch the PDUs to accomplish the three
main functions of IDS, such as packet filtering, traffic me-
tering, and signature detection. The NPM board should be
directly mounted on the LIM board by connectors so that
it communicates with host processor via the LIM board. The
FPP and the RSP use SSRAM arrays for program and control
(we can find them around the network processors in (Figure
7)). Hence, the control or program will be also downloaded
from the host processor via the LIM board.

In this prototype system we use 2.5G APP solution to
implement the NPM design so that the board cannot handle
the full traffic stream if we assume every PDU is sensed
as discussed in Section IV. However, we believe this
prototype is enough to evaluate the effective of our proposed
architecture in this paper. In addition to the experiments
results, we present the simulation results by SPA [20] to
evaluate the full traffic on 25G and 5G APP solutions,

The ASI has external synchronous static RAM (SSRAM)
arrayvs that may be used for keeping state and statistics
related to traffic seen by the FPP. (Figure 8) shows the
memory mapped diagram of the ASI external SSRAM, which
stores the diverse counter values. In this prototype system,
we configured the memory up to 2048 entries for flow,

permission, blocking, and sensing statistics, respectively.

|

saic | intertace
@€ty | (128 Entry)

PO 1P1

0x00 0x100 0x200 0x1400  Dx2400 0x3400 0x4400 0x5400 0x6400 0x7400 0x8400

(Figure 8) Memory Map of ASI external SSRAM
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Our test environments have two pairs of the LIM and the
NPM boards are mounted on the industrial PC platform via
64-bit PCI slots; that is a Pentium 4 host processor running
Linux. We interconnect the two NPM boards with a 5-inch
blue ribbon cable which supports the parallel transmission
at 104Mbps to transmit the sensed PDUs.

The Gigabit links are directly connected between the LIM
and Shomiti’s THGs (Ten Hundred Gigabit system) [18]
which provides two ports full duplex 1Gbps Ethernet. THGs
generates Ethernet frames with full line rate whilst the actual
traffic rate is less than full line rate dﬁe to the 12-byte gap
time between Ethernet frames, and supports the real-time
monitoring and measurement.

In our setup, Shomiti's THGs can generate the attack
traffic as defined in (Figure 8), and the LIM and the NPM-1
boards filter and meter the traffic according to the blocking
and metering rules, respectively. Whenever a PDU is sensed
at NPM-1 board based on the sensing rule, two copies of
the PDU are forwarded to the NPM-2 board and general
purpose processor using PCI bus. Finally, the NPM-2 board
looks up the attack signatures in the payload and the general
purpose CPU inspect and analysis the packets by heuristic

mechanism.

5. Experiment Result

We have developed our prototype system based on the
proposed architecture. The prototype is programmed in a
combination of C and FPL programming language. Most of
all, our prototype system is implemented in programming
languages that is best suited for the task it has to perform.
Basically, Application Task block on the CPU is implemented
in C programming language, but Kemel Module block is
implemented to the kernel module programming that is best
suited for high-speed pattern matching operation. NPM-2
Logic block is implemented in FPL that is best suited for
high-speed packet processing in hardware. Most of all, the
prototype system focus on kernel logic and NPM-2 logic for
real-time traffic analysis and intrusion detection on high-
speed links. Also, we employed inline mode capable of ef-
fective response by using two Gigabit Ethernet links. That
is, our prototype system has developed in the side of
improvement in performance for packet processing.

The goal of the set of experiments described in this section
is to get a preliminary evaluation of the effectiveness of our
approach. The first experiment was to test for the packet
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filtering and traffic metering. The Shomiti’s THGs generated
two TCP traffic streams at 1 Gbps line rate for each gigabit
Ethernet port, which are 64-byte IP packet flows. This traffic
was injected on two gigabit Ethernet ports simultaneously.
As we explained, the actual full traffic of 64-byte IP packets
corresponds to 76% of line rate due to the gap time. From
the experiment, we confirmed that the prototype system
blocked the full traffic in wire-speed, and exactly counted
the number of discard packets. When we permitted the traffic
by updating the ACL list, the full incoming traffic from port
0 (or port 1) was forwarded to port 1 (or port 0) while counted
the number of passed packets. We note that the number of
filtering or metering rule sets does not affect the performance.

For performance evaluation of our prototype system, our
tests use traffic generated by the traffic generator, Shomitti.
The test data is configured as attack traffic according to the
protocol and packet size. Therefore, the whole traffic is
matched by FPP logic, and is sent to kernel logic and Second
APP. That is, we show performance of the whole detection
mechanism from FPP logic to kernel logic. <Table 1> and
(Figure 9) shows the packet processing performance as the
experimental results. As shown in the results, our prototype
system is capable of processing until a maximum throughput
of 240Mbps about packets matched in NPM-1. And, basic
packet sensing and header pattern matching is capable of
processing until 2Gbps. Therefore, rule configuration of our
system is very important.

(Table 1> Experimental Results

Protooy acket Size|  eabyte 256byte 1518byte
TCP Traffic 50Mbps 110Mbps 240Mbps
UDP Traffic 50Mbps 140Mbps 240Mbps
ICMP Traffic 50Mbps 150Mbps 240Mbps

Currently, we are in the process of improving the imple-
mentation as well as developing new ones. That is, our
prototype system leaves much to be desired. Furthermore,
we analyzed the functions of various intrusion detection
systems in our testbed network. And now, we are defining
more effective analysis functionality in order to improve the
performance of detection mechanism on high-speed links.

The second experiment was to test for the deep packet
inspection in NP-2. The Shomiti's THGs generated the attack
traffic, which were example 1, 2 and 4 shown in (Figure 8).
As we explained before, the number of rule set doest not
affect the performance of the FPP and the RSP. That means

the performance of the proposed architecture dose not
degraded as an increasing number of signatures. We also
evaluated the performance with different packet length, such
as 64, 128, 256, 512, and 1024 bytes. The attack signatures
are inserted at the end of payload of the generated PDU,
hence the time consumption for the pattern matching process
at the NPM-2 must be under the worst condition. But the
attack traffic was injected on only one gigabit Ethernet port
at 1Gbps full line rate; because the all attack traffic was
sensed at NPM-1 board, and then forwarded to NPM-2 board
at 2Gbps which might be the limitation of our prototype
system. To find the maximum throughput of deep packet
inspection of the NPM-2, we disabled intrusion prevention
module running on the host processor, which receives the
alert from the NPM-2, and then updates the ACL list of the
NPM-1 to prevent the attack. So the attack traffic con-
tinuously forwarded to the NPM-2 even if the attack was
detected.

TCP Packet Processing Performance

Throughput(Mbps)

64 ] 256 1518
Packet Size(byte)

UDP Packet Processing Performance

ICMP Packet Processing Performance

g g 250] /_u;"
T $ ‘
§ :E 150| //
g e
s0"%
o 1518 ° 64 256 1518
Packet Size(byts) Packet Size(byts)

(Figure 9) Packet Processing Performance in Kernel Logic on
General Purpose Processor

(Figure 10) shows the results of this second experiment.
For each packet length displayed on the x-axis, we show
the maximum throughput (represented by the fraction of 1
Gbps line rate) of deep packet inspection at the NPM-2 for
each experiment and simulation results.

Note that the actual 1 Gbps Ethernet full traffic increases
as the packet length increases due to the gap time between
PDUs. As shown in the figure, the experiment result of 25G
APP solution shows roughly the same percentage at 34%
regardless of the different packet length. However, the sim-
ulation result of 2.5G APP solution slightly varies with the



packet length. Comparing the experiment and simulation
results of 25G APP solution, we can predict that the per-
formance of 5G APP solution may be over 60%. Moreover,
we believe the 10G APP solution will support the deep packet
inspection with the wire speed.
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Fraction of Line Rate (%)

64 128 256 512 1024
Packet Length (Bytes)

BE25G APP simulation B25G APP experiment
O5G APP simulation 001G full Ethernet traffic

{Figure 10) Experiment and Simulation Results on NPM-2
6. Conclusion

In this paper we have proposed an NP based In-Line mode
NIDS using Agere System’s APP solutions, which might be
the first approach to apply network processor to IDS.
Cornparing to ASIC approach, the NP-based implementation
can dynamically update each rule set for filtering, metering,
and signature; that is the system can keep up with another
dimension of the problem - frequent standard changes and
new protocol and application requirements. Most of all, the
prototype system focuses on reducing a lowing of perfor-
mance caused by high-speed traffic analysis to the minimum.
Therefore, it is run by the NPM logic and kernel logic
proposed for improvement in performance. Also, it has the
advantage that is capable of supporting the effective response
by using inline mode monitoring technique on two Gigabit
links.

The evaluation of the first prototype based on 2.5G APP
solution showed that the proposed architecture is very
promising as an in-line mode system because it can filter
and meter network traffic with two 1 Gbps Ethernet ports
at wire speed, even if it can not inspect the payload contents
at wire speed. This is why we separate the deep packet
inspection from these basic functions, and it greatly promotes
the availability of the in-line mode system.

From our experiment and simulation results, we expect

that our implementation can search the signatures on a data
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bandwidth of several gigabits per second by using more high
performance NP solutions, even though the presented pro-
totype can handle only several hundred megabits per second.
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