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FUZZY SUBRINGS OF FUNDAMENTAL RINGS

B. DAVVAZ

ABSTRACT. H,-rings first were introduced by Vougiouklis in 1990. The largest class
of algebraic systems satisfying ring-like axioms is the H,-ring. Let R be an H,-ring
and vk the smallest equivalence relation on R such that the quotient R/vg, the set
of all equivalence classes, is a ring. In this case R/~ is called the fundamental ring.
In this short communication, we study the fundamental rings with respect to the
product of two fuzzy subsets.

1. INTRODUCTION

In 1971, Rosenfeld [8] applied the concept of fuzzy set theory to algebra and
introduced the concept of fuzzy subgroup of a group. Sherwood [9] defined the
direct product of fuzzy subgroups, Osmer [6] and Ray (7] investigated this concept,
also you can see Davvaz [2, 3]. In 1982, Liu [5] defined and studied fuzzy subrings
as well as fuzzy ideals.

Vougiouklis in the Fourth AHA Congress 1990 Vougiouklis [11] introduced the no-
tion of H,-structures and then some researchers followed him. Davvaz [1, 4] defined
the concepts of fuzzy H,-ideals and fuzzy H,-subrings which are a generalization of
the concepts of fuzzy ideals and fuzzy subrings. Davvaz [4] used the definition of a
fuzzy H,-subring and defined the product of fuzzy H,-subrings. Let R be an H,-ring
and 5 the smallest equivalence relation on R such that the quotient R/~ the set
of all equivalence classes, is a ring. In this case R/v}, is called the fundamental ring.
In this short communication, we study the fundamental rings with respect to the
product of two fuzzy subsets.
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2. BASIC DEFINITIONS

In this section we recall some basic definitions.

Definition 2.1. Let X be a non-empty set. A fuzzy subset p of X is a function
p: X — [0,1]. Let X, Y be non-empty sets and u, A fuzzy subsets of X, Y, respec-
tively. The direct product u x X is usually defined by (¢ X A)(z,y) = min{u(z), A(y)}
forallze X andy €Y.

Definition 2.2 (Liu [5]). Let A be an ordinary ring and 4 : A — [0,1] be a
fuzzy subset of A. Then y is called a fuzzy subring of A if it satisfies the following

conditions:

(1) min{pu(z), u(y)} < p(z +y) for all z,y in A,
(2) p(z) < p(—=z) for all z in A,
(3) min{u(z), u(y)} < p(zy) for all z,y in A.
Let u be any fuzzy subring of A and 0 be the additive identity of A. Then it is
easy to verify the following: p(z) < p(0) and u(z) = p(—=z) for all z € A.

Definition 2.3 (Vougiouklis {12]). A hyperstructure is a non-empty set R together
with a function * : R x R — P*(R) called hyperoperation, where P*(R) is the set
of all non-empty subsets of R. A hyperstructure (R, *) is called an H,-group if the
follwoing axioms hold:

(1) (z*y)xzNzx(y*xz)#0 for all z,y,2 € R,
(2) axR=Rxa=Rforalla€R.
An H,-ring is a multivalued system (R, +, -) satisfying the ring-like axioms in the
following way:
(1) (R,+) is an H,-group,
(2) (R,-) is an H,-semigroup, i.e., (z-y)-z2Nz-(y-2) # 0 for all z,y,2 € R,
(3) - is weak distributive with respect to +, i.e., z- (y+2z)N(z-y+x-2) # 0 and
(z+y)-zN(z-2+y-2)#0forallz,yzecR.
Let A and B be two H,-rings. Then in A x B we can define two hyperoperations

as follows:
(a1,b1) ® (a2,b2) = {(a,b)|a € a1 + a2, b € by + by},
(a1,b1) ® (a2,b2) = {(a,b)|a € a1 - ag, b € by - ba}.
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Then A x B is an H,-ring. We call this H,-ring the external direct product of 4,
B.

Definition 2.4 (Davvaz [4]). Let (R, +,-) be an H,-ring and u a fuzzy subset of R.
Then p is said to be a fuzzy H,-subring of R, if the following axioms hold:

(1) min{u(z), p(y)} < infacary{u(a)} for all z,y € R,
(2) for all z,a € R there exists y € R such that € a +y and

min{u(a), u(z)} < p(y),
(3) forall z,a € R there exists z € R such that z € z4+a and min{u(a), u(z)} < p(z),

(4) min{u(z), 4(1)} < infacay{u(c)} for all 7,y € R. )

3. FUNDAMENTAL RELATIONS AND Fuzzy SUBRINGS

Let (R,+,-) be an Hy-ring. The relation 7% is the smallest equivalence relation
on R such that the quotient R/vy, the set of all equivalenc classes, is a ring. v is
called the fundamental relation on R, and R/~}, is called the fundamental ring. If
U denotes the set of all finite polynomials of elements of R, over N (the set of all
natural numbers), then a relation yg can be defined on R whose transitive closure
is the fundamental relation 75 (see Vougiouklis [12]). The relation g is as follows:
For z,y in R we write zygy if and only if {z,y} C u for some u € U. Suppose v5(a)
is the equivalence class containing a € R. Then both the sum & and the product ®
on R/~} are defined as follows:

Yr(a) ® Yr(b) = Yr(c), forall c € vr(a) + Vr(b),
Tr(a) © Yr(b) = vg(d), forall d € Yg(a) - vR(b).

Definition 3.1. Let R be an H,-ring and p a fuzzy subset of R. The fuzzy subset
Bz, ¢ B[R — [0, 1] is defined as follows:
prs,(YR(2)) = sup {u(a)}.
a€vg(x)

Theorem 3.2 (Davvaz [4]). Let R be an H,-ring and p be a fuzzy H,-subring of
R. Then piy; is a fuzzy subring of the ring R/~

The kernel of the canonical map ¢ : R — R/v}, is called the core of R and is
denoted by wr. Here we also denote by wg the zero element of R/~}, (see Spartalis
& Vougiouklis [10], Vougiouklis [11, 12]).
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Theorem 3.3 (Vougiouklis [12]). Let A, B be H,-rings. Let v, v and v}, g are
fundamental relations on A, B and A x B, respectively. Then

(A x B)/vaxp = A/7a X B/7p-

Theorem 3.4 (Davvaz [4]). Let A,B be H,-rings and let v}, 75 and v}, g be
fundamental relations on A, B and A x B, respectively. If u, A are fuzzy H,-subrings
of A, B respectively, then we have

(B X Nz = Hrg X Mg

Theorem 3.5. Let u, A be fuzzy subsets of H,-rings A and B, respectively. If ppx A
is a fuzzy H,-subring of A x B, then at least one of the following two statements
must be held:

(1 M (wp) 2 Hyy (7a(a)) for alla € A,
(2) tys (@A) > Mg (Y1) for all b€ B.

Proof. Suppose u x X is a fuzzy H,-subring of A x B. Then by Theorem 3.2,
(1 X Ay 5 is a fuzzy subring of (A x B)/vj,p. Using Theorem 3.4, we have
(n x )‘)’ﬂxa = {yy X Ayz. By contraposition, suppose that none of the statements
(1) and (2) holds. Then we can find ap € A and by € B such that

tys, (Ya(ao)) > Ayy (wp) and Ayg (Vg(bo)) > piys (wa).

Now, we have

(K X Ayg)(Va(a0), ¥B(bo)) = min{pyy (vi(ao)), My (vB(bo))}
> min{pys (wa), Ay (ws)}
= (by; X Ayy)(wa, wB)-

On the other hand, it can be easily verified that a fuzzy subring of a ring attains

its supremum at zero element, and so we have
(Byy, X Az )(wa, wB) = (yy X Ayg)(va(a0), YB(bo))-

Thus piys X Ayy is not a fuzzy subring of A/vy x B/vg. Therefore either
Ayy (WB) 2 pyy (Va(a)) for all a € A or puyy (wa) 2 Ayy (v5(D)) for all b € B. O
Theorem 3.6. Let p, \ are fuzzy subsets of H,-rings A, B, respectively, such that
B X X is a fuzzy Hy-subring of A x B. If puys (v4(a)) < Ay, (wB) for all a € A, then
fyy, 18 a fuzzy subring of A/v}.



FUZZY SUBRINGS OF FUNDAMENTAL RINGS 131

Proof. Suppose z,y € A, then we have

pyy, (Vi () © ¥4 () = min {pyy (Y4(2) © Y4())s My (W ®wh)}
= (tyy, X Az )((va(z), wB) ® (v4(v), wB))
> min {( gy, X Mgy ) (V4

= min { min{u. (v4(z)

z),wn), (/J'y" X Ay ) (Y (y),wB)}
Ayy (wB)},
min { s (Va(®)), Ay (wB)}}
= min {y; (YA (@), sy (Y2}

(
);

Also, we have

piy (—7a(2)) = min { gty (—74(2)), Ayp(wB)}
= (Kyy X Ayg)(=7a(=), ‘UB)
= (g X Az )(—(7va(2), wB))
> (pyy X Ayy)(Va(2), wa)
= min {py (Wi(2)), Ay (ws)}

= pyy (Va(2))-
Similarly, we have

piys (Va(2) © ¥a(y)) 2 min {ps (Va(2)), s (Va)}-

Therefore pyy is a fuzzy subgring of A/7}. O

Corollary 3.7. Let u, A be fuzzy subsets of H,-rings A, B, respectively, such that
p X X is a fuzzy Hy-subring of A x B. If Ayx (v5(b)) < pys (wa) for allb € B, then
Ayy, 18 @ fuzzy subring of B/vp.

Proof. The proof is similar to the proof of Theorem 3.6. O
Corollary 3.8. Let u, A be fuzzy subsets of H,-rings A, B, respectively. If u X X is
a fuzzy H,-subring of A x B, then either By U8 Q fuzzy subring of A/v} or Ays, 18

a fuzzy subring of B/vg.

Proof. The proof follows from Theorems 3.5, 3.6 and Corollary 3.7. O
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