FUZZY SUBRINGS OF FUNDAMENTAL RINGS

B. DAVVAZ

ABSTRACT. H_v -rings first were introduced by Vougiouklis in 1990. The largest class of algebraic systems satisfying ring-like axioms is the H_v -ring. Let R be an H_v -ring and γ_R^* the smallest equivalence relation on R such that the quotient R/γ_R^* , the set of all equivalence classes, is a ring. In this case R/γ_R^* is called the fundamental ring. In this short communication, we study the fundamental rings with respect to the product of two fuzzy subsets.

1. Introduction

In 1971, Rosenfeld [8] applied the concept of fuzzy set theory to algebra and introduced the concept of fuzzy subgroup of a group. Sherwood [9] defined the direct product of fuzzy subgroups, Osmer [6] and Ray [7] investigated this concept, also you can see Davvaz [2, 3]. In 1982, Liu [5] defined and studied fuzzy subrings as well as fuzzy ideals.

Vougiouklis in the Fourth AHA Congress 1990 Vougiouklis [11] introduced the notion of H_v -structures and then some researchers followed him. Davvaz [1, 4] defined the concepts of fuzzy H_v -ideals and fuzzy H_v -subrings which are a generalization of the concepts of fuzzy ideals and fuzzy subrings. Davvaz [4] used the definition of a fuzzy H_v -subring and defined the product of fuzzy H_v -subrings. Let R be an H_v -ring and γ_R^* the smallest equivalence relation on R such that the quotient R/γ_R^* , the set of all equivalence classes, is a ring. In this case R/γ_R^* is called the fundamental ring. In this short communication, we study the fundamental rings with respect to the product of two fuzzy subsets.

Received by the editors August 21, 2003 and, in revised form, April 13, 2004. 2000 Mathematics Subject Classification. 16Y99, 20N20, 20N25.

Key words and phrases. H_v -ring, H_v -subring, fundamental relation, fundamental ring, fuzzy subset.

128 B. DAVVAZ

2. Basic Definitions

In this section we recall some basic definitions.

Definition 2.1. Let X be a non-empty set. A fuzzy subset μ of X is a function $\mu: X \longrightarrow [0,1]$. Let X, Y be non-empty sets and μ , λ fuzzy subsets of X, Y, respectively. The direct product $\mu \times \lambda$ is usually defined by $(\mu \times \lambda)(x,y) = \min\{\mu(x), \lambda(y)\}$ for all $x \in X$ and $y \in Y$.

Definition 2.2 (Liu [5]). Let A be an ordinary ring and $\mu : A \longrightarrow [0,1]$ be a fuzzy subset of A. Then μ is called a fuzzy subring of A if it satisfies the following conditions:

- (1) $\min\{\mu(x), \mu(y)\} \le \mu(x+y)$ for all x, y in A,
- (2) $\mu(x) \leq \mu(-x)$ for all x in A,
- (3) $\min\{\mu(x), \mu(y)\} \leq \mu(xy)$ for all x, y in A.

Let μ be any fuzzy subring of A and 0 be the additive identity of A. Then it is easy to verify the following: $\mu(x) \leq \mu(0)$ and $\mu(x) = \mu(-x)$ for all $x \in A$.

Definition 2.3 (Vougiouklis [12]). A hyperstructure is a non-empty set R together with a function $*: R \times R \longrightarrow \mathcal{P}^*(R)$ called hyperoperation, where $\mathcal{P}^*(R)$ is the set of all non-empty subsets of R. A hyperstructure (R, *) is called an H_v -group if the following axioms hold:

- (1) $(x*y)*z \cap x*(y*z) \neq \emptyset$ for all $x, y, z \in R$,
- (2) a * R = R * a = R for all $a \in R$.

An H_v -ring is a multivalued system $(R, +, \cdot)$ satisfying the ring-like axioms in the following way:

- (1) (R, +) is an H_v -group,
- (2) (R,\cdot) is an H_v -semigroup, i. e., $(x\cdot y)\cdot z\cap x\cdot (y\cdot z)\neq\emptyset$ for all $x,y,z\in R$,
- (3) · is weak distributive with respect to +, i. e., $x \cdot (y+z) \cap (x \cdot y + x \cdot z) \neq \emptyset$ and $(x+y) \cdot z \cap (x \cdot z + y \cdot z) \neq \emptyset$ for all $x, y, z \in R$.

Let A and B be two H_v -rings. Then in $A \times B$ we can define two hyperoperations as follows:

$$(a_1,b_1) \oplus (a_2,b_2) = \{(a,b)|a \in a_1 + a_2, b \in b_1 + b_2\},\$$

 $(a_1,b_1) \odot (a_2,b_2) = \{(a,b)|a \in a_1 \cdot a_2, b \in b_1 \cdot b_2\}.$

Then $A \times B$ is an H_v -ring. We call this H_v -ring the external direct product of A, B.

Definition 2.4 (Davvaz [4]). Let $(R, +, \cdot)$ be an H_v -ring and μ a fuzzy subset of R. Then μ is said to be a fuzzy H_v -subring of R, if the following axioms hold:

- (1) $\min\{\mu(x), \mu(y)\} \leq \inf_{\alpha \in x+y} \{\mu(\alpha)\}\$ for all $x, y \in R$,
- (2) for all $x, a \in R$ there exists $y \in R$ such that $x \in a + y$ and $\min\{\mu(a), \mu(x)\} \leq \mu(y)$,
- (3) for all $x, a \in R$ there exists $z \in R$ such that $x \in z+a$ and $\min\{\mu(a), \mu(x)\} \le \mu(z)$,
- (4) $\min\{\mu(x), \mu(y)\} \leq \inf_{\alpha \in x \cdot y} \{\mu(\alpha)\}\$ for all $x, y \in R$.

3. Fundamental Relations And Fuzzy Subrings

Let $(R, +, \cdot)$ be an H_v -ring. The relation γ_R^* is the smallest equivalence relation on R such that the quotient R/γ_R^* , the set of all equivalenc classes, is a ring. γ_R^* is called the fundamental relation on R, and R/γ_R^* is called the fundamental ring. If \mathcal{U} denotes the set of all finite polynomials of elements of R, over \mathbb{N} (the set of all natural numbers), then a relation γ_R can be defined on R whose transitive closure is the fundamental relation γ_R^* (see Vougiouklis [12]). The relation γ_R is as follows: For x, y in R we write $x\gamma_R y$ if and only if $\{x, y\} \subseteq u$ for some $u \in \mathcal{U}$. Suppose $\gamma_R^*(a)$ is the equivalence class containing $a \in R$. Then both the sum \oplus and the product \odot on R/γ_R^* are defined as follows:

$$\begin{split} \gamma_R^*(a) \oplus \gamma_R^*(b) &= \gamma_R^*(c), \ \text{ for all } \ c \in \gamma_R^*(a) + \gamma_R^*(b), \\ \gamma_R^*(a) \odot \gamma_R^*(b) &= \gamma_R^*(d), \ \text{ for all } \ d \in \gamma_R^*(a) \cdot \gamma_R^*(b). \end{split}$$

Definition 3.1. Let R be an H_v -ring and μ a fuzzy subset of R. The fuzzy subset $\mu_{\gamma_R^*}: R/\gamma_R^* \longrightarrow [0,1]$ is defined as follows:

$$\mu_{\gamma_R^*}(\gamma_R^*(x)) = \sup_{a \in \gamma_R^*(x)} \{\mu(a)\}.$$

Theorem 3.2 (Davvaz [4]). Let R be an H_v -ring and μ be a fuzzy H_v -subring of R. Then $\mu_{\gamma_R^*}$ is a fuzzy subring of the ring R/γ_R^* .

The kernel of the canonical map $\varphi: R \longrightarrow R/\gamma_R^*$ is called the core of R and is denoted by ω_R . Here we also denote by ω_R the zero element of R/γ_R^* , (see Spartalis & Vougiouklis [10], Vougiouklis [11, 12]).

130 B. DAVVAZ

Theorem 3.3 (Vougiouklis [12]). Let A, B be H_v -rings. Let γ_A^* , γ_B^* and $\gamma_{A\times B}^*$ are fundamental relations on A, B and $A\times B$, respectively. Then

$$(A \times B)/\gamma_{A \times B}^* \cong A/\gamma_A^* \times B/\gamma_B^*$$
.

Theorem 3.4 (Davvaz [4]). Let A, B be H_v -rings and let γ_A^* , γ_B^* and $\gamma_{A\times B}^*$ be fundamental relations on A, B and $A\times B$, respectively. If μ , λ are fuzzy H_v -subrings of A, B respectively, then we have

$$(\mu \times \lambda)_{\gamma_{A \times B}^*} = \mu_{\gamma_A^*} \times \lambda_{\gamma_B^*}.$$

Theorem 3.5. Let μ , λ be fuzzy subsets of H_v -rings A and B, respectively. If $\mu \times \lambda$ is a fuzzy H_v -subring of $A \times B$, then at least one of the following two statements must be held:

- (1) $\lambda_{\gamma_B^*}(\omega_B) \ge \mu_{\gamma_A^*}(\gamma_A^*(a))$ for all $a \in A$,
- (2) $\mu_{\gamma_A^*}(\omega_A) \ge \lambda_{\gamma_B^*}(\gamma_B^*(b))$ for all $b \in B$.

Proof. Suppose $\mu \times \lambda$ is a fuzzy H_v -subring of $A \times B$. Then by Theorem 3.2, $(\mu \times \lambda)_{\gamma_{A \times B}^*}$ is a fuzzy subring of $(A \times B)/\gamma_{A \times B}^*$. Using Theorem 3.4, we have $(\mu \times \lambda)_{\gamma_{A \times B}^*} = \mu_{\gamma_A^*} \times \lambda_{\gamma_B^*}$. By contraposition, suppose that none of the statements (1) and (2) holds. Then we can find $a_0 \in A$ and $b_0 \in B$ such that

$$\mu_{\gamma_A^*}(\gamma_A^*(a_0)) > \lambda_{\gamma_B^*}(\omega_B) \text{ and } \lambda_{\gamma_B^*}(\gamma_B^*(b_0)) > \mu_{\gamma_A^*}(\omega_A).$$

Now, we have

$$(\mu_{\gamma_A^*} \times \lambda_{\gamma_B^*})(\gamma_A^*(a_0), \ \gamma_B^*(b_0)) = \min\{\mu_{\gamma_A^*}(\gamma_A^*(a_0)), \ \lambda_{\gamma_B^*}(\gamma_B^*(b_0))\}$$
$$> \min\{\mu_{\gamma_A^*}(\omega_A), \ \lambda_{\gamma_B^*}(\omega_B)\}$$
$$= (\mu_{\gamma_A^*} \times \lambda_{\gamma_B^*})(\omega_A, \ \omega_B).$$

On the other hand, it can be easily verified that a fuzzy subring of a ring attains its supremum at zero element, and so we have

$$(\mu_{\gamma_A^*} \times \lambda_{\gamma_B^*})(\omega_A, \ \omega_B) \ge (\mu_{\gamma_A^*} \times \lambda_{\gamma_B^*})(\gamma_A^*(a_0), \ \gamma_B^*(b_0)).$$

Thus $\mu_{\gamma_A^*} \times \lambda_{\gamma_B^*}$ is not a fuzzy subring of $A/\gamma_A^* \times B/\gamma_B^*$. Therefore either $\lambda_{\gamma_B^*}(\omega_B) \geq \mu_{\gamma_A^*}(\gamma_A^*(a))$ for all $a \in A$ or $\mu_{\gamma_A^*}(\omega_A) \geq \lambda_{\gamma_B^*}(\gamma_B^*(b))$ for all $b \in B$.

Theorem 3.6. Let μ , λ are fuzzy subsets of H_v -rings A, B, respectively, such that $\mu \times \lambda$ is a fuzzy H_v -subring of $A \times B$. If $\mu_{\gamma_A^*}(\gamma_A^*(a)) \leq \lambda_{\gamma_B^*}(\omega_B)$ for all $a \in A$, then $\mu_{\gamma_A^*}$ is a fuzzy subring of A/γ_A^* .

Proof. Suppose $x, y \in A$, then we have

Also, we have

$$\mu_{\gamma_A^*}(-\gamma_A^*(x)) = \min \left\{ \mu_{\gamma_A^*}(-\gamma_A^*(x)), \ \lambda_{\gamma_B^*}(\omega_B) \right\}$$

$$= (\mu_{\gamma_A^*} \times \lambda_{\gamma_B^*})(-\gamma_A^*(x), \ \omega_B)$$

$$= (\mu_{\gamma_A^*} \times \lambda_{\gamma_B^*})(-(\gamma_A^*(x), \ \omega_B))$$

$$\geq (\mu_{\gamma_A^*} \times \lambda_{\gamma_B^*})(\gamma_A^*(x), \ \omega_B)$$

$$= \min \left\{ \mu_{\gamma_A^*}(\omega_A^*(x)), \ \lambda_{\gamma_B^*}(\omega_B) \right\}$$

$$= \mu_{\gamma_A^*}(\gamma_A^*(x)).$$

Similarly, we have

$$\mu_{\gamma_A^*}(\gamma_A^*(x) \odot \gamma_A^*(y)) \ge \min \left\{ \mu_{\gamma_A^*}(\gamma_A^*(x)), \ \mu_{\gamma_A^*}(\gamma_A^*(y)) \right\}.$$

Therefore $\mu_{\gamma_A^*}$ is a fuzzy subgring of A/γ_A^* .

Corollary 3.7. Let μ , λ be fuzzy subsets of H_v -rings A, B, respectively, such that $\mu \times \lambda$ is a fuzzy H_v -subring of $A \times B$. If $\lambda_{\gamma_B^*}(\gamma_B^*(b)) \leq \mu_{\gamma_A^*}(\omega_A)$ for all $b \in B$, then $\lambda_{\gamma_B^*}$ is a fuzzy subring of B/γ_B^* .

Proof. The proof is similar to the proof of Theorem 3.6. \Box

Corollary 3.8. Let μ , λ be fuzzy subsets of H_v -rings A, B, respectively. If $\mu \times \lambda$ is a fuzzy H_v -subring of $A \times B$, then either $\mu_{\gamma_A^*}$ is a fuzzy subring of A/γ_A^* or $\lambda_{\gamma_B^*}$ is a fuzzy subring of B/γ_B^* .

Proof. The proof follows from Theorems 3.5, 3.6 and Corollary 3.7.

132 B. DAVVAZ

REFERENCES

- 1. B. Davvaz: On H_v -rings and fuzzy H_v -ideals. J. Fuzzy Math. 6 (1998), no. 1, 33–42. CMP 1609919
- 2. _____: Interval-valued fuzzy subhypergroups. Korean J. Comput. Appl. Math. 6 (1999), no. 1, 197-202. MR 99k:20124
- 3. _____: Product of fuzzy H_v -subgroups. J. Fuzzy Math. 8 (2000), no. 1, 43–51. MR 2001a:20118
- 4. _____: T-fuzzy H_v -subrings of an H_v -ring. J. Fuzzy Math. 11 (2003), no. 1, 215–224. MR 2004a:20078
- 5. W. J. Liu: Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems 8 (1982), no. 2, 133-139. MR 83h:08007
- 6. M. T. Osmen: On the direct product of fuzzy subgroups. Fuzzy Sets and Systems 12 (1984), no. 1, 87-91. MR 85e:03128
- A. K. Ray: On product of fuzzy subgroups. Fuzzy Sets and Systems 105 (1999), no. 1, 181–183. CMP 1687982
- 8. A. Rosenfeld: Fuzzy groups. J. Math. Anal. Appl. 35 (1971), 512-517. MR 43#6355
- 9. H. Sherwood: Products of fuzzy subgroups. Fuzzy Sets and Systems 11 (1983), no. 1, 79-89. MR 85a:03070
- 10. S. Spartalis & T. Vougiouklis: The fundamental relations of H_v -rings. Riv. Mat. Pura Appl. no. 14, (1994), 7-20. MR 95h:16061
- T. Vougiouklis: The fundamental relation in hyperrings. The general hyperfield. In: T. Vougiouklis (Ed.), Algebraic hyperstructures and applications. Proceedings of the Fourth International Congress held at "Demokritos" University of Thrace, Xanthi, June 27–30, 1990 (pp. 203-211). World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. MR 92d:20003
- 12. _____: Hyperstructures and their representations. Hadronic Press, Inc., Palm Harbor, FL, 1994. MR 95h:20093

DEPARTMENT OF MATHEMATICS, YAZD UNIVERSITY, YAZD, IRAN Email address: davvaz@yazduni.ac.ir