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WEAKLY KRULL AND RELATED PULLBACK DOMAINS

Gyu WHAN CHANG

ABSTRACT. Let T be an integral domain, M a nonzero maximal ideal of T, K =
T/M, ¢ : T - K the canonical map, D a proper subring of K, and R = ¢~ (D) the
pullback domain. Assume that for each € T, there is a u € T such that u is a unit
in T and uz € R. In this paper, we show that R is a weakly Krull domain (resp.,
GWFD, AWFD, WFD) if and only if ht M = 1, D is a field, and T is a weakly Krull
domain (resp., GWFD, AWFD, WFD).

1. INTRODUCTION

Recall that an integral domain D is called a weakly Krull domain if
D = npexl(D)DP

and this intersection has finite character, that D is a generalized weakly factorial
domain (GWFD) if each nonzero prime ideal of D contains a primary element, that
D is an almost weakly factorial domain (AWFD) if for each nonzero nonunit element
z of D, there is a positive integer n = n(z) such that ™ can be written as a product
of primary elements, and that D is a weakly factorial domain (WFD) if each nonzero
nonunit element of D is a product of primary elements. Clearly, a WFD is an AWFD
and an AWFD is a GWFD. It is also known that a GWFD is a weakly Krull domain
Anderson, Chang & Park [4, Corollary 2.3].

Let T be an integral domain, M a nonzero maximal ideal of T, K = T/M,
¢ : T — K the canonical map, D a proper subring of K, and R = ¢~ }(D) the
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pullback domain.

R=¢ YD) — D

o | |

T X s K=T/M

We shall refer to R as a pullback domain of type (O0) and as a pullback domain
of type (O*) if for each 0 # z € T, there is a u € U(T) such that uz € R. If R is
a pullback domain of type (O), then M is a divisorial ideal (and hence a t-ideal) of
R, M has the same height in both R and T, and for any prime ideal P(? M) of R,
T C Rp and Rp = Tprpnr (cf Fontana & Gabelli [9, p. 805]). One can show that
if T = K + M (and hence R = D + M), then R is a pullback domain of type ((0*).

In Anderson, Chang & Park [5, Section 2], we showed that if T = K + M (and
hence R = D+ M), then R is a weakly Krull domain (resp., GWFD, AWFD, WFD)
if and only if ht M =1, D is a field, and T is a weakly Krull domain (resp., GWFD,
AWFD, WFD). The purpose of this paper is to generalize these results to a pullback
domain of type () or (O*). That is, we show that if R is a pullback domain of
type (0), then R is a weakly Krull domain if and only if htM = 1, D is a field,
and T is a weakly Krull domain; and that if R is of type (O*), then R is a GWFD
(resp., AWFD, WFD) if and only if htM = 1, D is a field, and T' is a GWFD (resp.,
AWFD, WFD).

Let D be an integral domain with quotient field K and I a nonzero fractional
ideal of D. Then

I'V={re K|zI € D}, I, = (I"))"!, and
I; = U{J,|(0) # J C I is finitely generated}.

If I, = I (resp., Iy = I, I = (x1,.-.,%n)y for some (0) # (z1,...,%x) € I), then I is
said to be a divisorial ideal (resp., t-ideal, finite type t-ideal). An ideal of D maximal
among proper integral t-ideals is called a mazimal t-ideal. A fractional ideal I is
t-invertible if (11 ~1); = D. It is well known that a maximal t-ideal is a prime ideal,
every proper integral t-ideal is contained in a maximal t-ideal, a t-invertible ¢-ideal
is of finite type, and a t-invertible prime t-ideal is a maximal t-ideal. We say that
D has t-dimension one, denoted by ¢t-dim(D) = 1, if each maximal ¢-ideal of D has
height-one.
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Let T(D) be the set of t-invertible fractional t-ideals of an integral domain D.
Then T(D) is an abelian group under the t-product I * J = (IJ), and hence
the quotient group Cl(D) = T(D)/Prin(D), called the class group of D, is also
an abelian group, where Prin(D) is the subgroup of 7(D) of nonzero principal
fractional ideals of D. If D is a Krull domain, then CI(D) is the usual divisor class
group, and if D is a Priifer domain, then CI(D) is the ideal class group of invertible
ideals (or Picard group) of D.

All rings considered in this paper are commutative integral domains with identity
and for an integral domain D, U(D) denotes the set of unit elements of D and X!(D)
is the set of height-one prime ideals of D. A nonzero nonunit element a of D is said
to be primary if aD is a primary ideal. It is known that if aD is primary, then
VaD is a maximal t-ideal. The reader is referred to Gilmer [12, § 32 and § 34] and
Zafrullah [16] for the t-operation; to Anderson & Zafrullah [1], Anderson, Mott &
Zafrullah [2], Anderson, Chang & Park [4, 5] for weakly Krull and related domains;
to Brewer & Rutter [8], Fontana & Gabelli [9], Gabelli & Houstongh [11], Lucas
(15] for pullback domains; to Anderson (3], Bouvier [6], Bouvier & Zafrullah {7},
Fontana & Gabelli [9], Fossum [10] for the class group; and to Fossum [10], Gilmer
[12], Kaplansky [14] for standard notations and definitions.

We first study when the pullback domain R is weakly Krull. Recall that a weakly
Krull domain has ¢-dimension one Anderson, Mott & Zafrullah [2, Lemma 2.1].

Theorem 1 (cf. Anderson, Chang & Park [5, Theorem 2.3]). Let R be a pullback
domain of type (0). Then R is a weakly Krull domain if and only if htM =1, D is
a field, and T is a weakly Krull domain.

Proof. (=) Assume that R is a weakly Krull domain. Then t-dim(R) = 1, and since
M is a t-ideal of R, M is a height-one maximal t-ideal of R. If a € D \ {0}, then
v~ 1(aD) is an invertible ideal of R such that M G ¢~1(aD) C R (cf. Fontana &
Gabelli [9, Corollary 1.7]). Hence M being a maximal t-ideal of R implies that D is
a field.

We next show that T is weakly Krull. Let Q(#£ M) be a maximal ideal of T, and
let P =QNR. Then Tg = Rp, and since Rp is weakly Krull Anderson, Chang &
Park [5, Lemma 2.1(2)],

Tq = N{Ty|Q" € X!(T) and Q' C Q}
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$0
T =Ngemax(m)TQ = Ngrexy(m) T

Note that for each Q' € X(T)\{M}, Ty = Rginr (and hence ht(Q' N R) = 1) and
T is an overring of R. Hence the intersection T' = Ngre x1(1y Ty has finite character,
and thus T is weakly Krull.

(<) Assume that htM = 1, D is a field, and T is weakly Krull. Let M; be a
maximal ideal of R such that My # M. Then Ry = Tg for some prime ideal @ of
T. Note that T is weakly Krull Anderson, Chang & Park [5, Lemma 2.1(2)]; so

Tg = Ru, = N{Rp|P € X'(R) and P C M;}.

Since R = N{Rp|M’ is a maximal ideal of R} and htM = 1, we have R =
Npex1(ryRp. Moreover, since R C T and for each P € X(R)\ {M}, Rp = Ty for
some @' € X!(T), the intersection R = Npc x1(r)Rp has finite character, and thus
R is weakly Krull. O

Our next corollary, which was observed in the proof of Theorem 1 above, will be
very useful in the subsequent arguments.

Corollary 2. Let R be a pullback domain of type (O). If R is a weakly Krull domain,
then X1 (R) = {QN R|Q € XYT)} and for each Q@ € X} (T)\ {M}, Ronr = Tp.

Theorem 3 (cf. Anderson, Chang & Park [5, Theorem 2.4]). If R is a pullback
domain of type (O*), then R is a GWFD if and only if htM =1, D is a field, and
T is a GWFD.

Proof. (=) Assume that R is a GWFD. Then since a GWFD is weakly Krull An-
derson, Chang & Park [4, Corollary 2.3], by Theorem 1 above, htM =1, D is a
field, and T is weakly Krull (and hence t-dim(T) = 1).

Let Q € XY(T) and P = QN R. Then htP = 1 (Corollary 2), and so P = VaR
for some a € R (cf. Anderson, Chang & Park [4, Theorem 2.2]). Thus Q = vaT
since @ is the unique prime ideal of T lying over P and t-dim(7T") = 1.

(<) Assume that htM =1, D is a field, and T is a GWFD. Then as a GWFD
is weakly Krull, R is weakly Krull by Theorem 1. Let P € X(R)\ {M} and
Q € X(T) such that Rp = Ty (Corollary 2). Then there is an z € R such that
Q = V2T (cf. Anderson, Chang & Park [4, Theorem 2.2]) since T is a GWFD and
R is of type ((0*). If P’ is a minimal prime ideal of zR, then P’ is a t-ideal of R,
and hence htP’ = 1 (note that t-dim(R) = 1); so P! = Q' N R for some Q' € X(T).
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Hence z € Q', and so @ = Q' and P = P'. Therefore, P = vVzR, and thus R is a
GWFD Anderson, Chang & Park [4, Theorem 2.2]. a

The proof of Theorem 3 shows that the “ = ” implication in Theorem 3 holds
for a pullback domain of type (OJ). Recall that an integral domain D is an AWFD
if and only if D is a weakly Krull domain and CI(D) is torsion Anderson, Mott &
Zafrullah [2, Theorem 3.4].

Theorem 4 (c¢f. Anderson, Chang & Park [5, Theorem 2.5]). If R is a pullback
domain of type (3J*), then R is an AWFD if and only if htM =1, D is a field, and
T is an AWFD.

Proof. (=) Assume that R is an AWFD. Then R is weakly Krull Anderson, Mott
& Zafrullah [2, Theorem 3.4]; so by Theorem 1 and Anderson, Mott & Zafrullah [2,
Theorem 3.4], it suffices to show that if J is a t-invertible ¢-ideal of T', then (J"), is
principal for some integer n > 1. Since M is a t-ideal of T' (note that htM = 1) and
J is t-invertible, JJ~1 ¢ M. Thus there is a u € J~! such that uJ € M. Replacing
J with uJ, we may assume that J € M. Since J is t-invertible and R is of type
(O%), there are some z1,...,Z, € R such that J = ((z1,...,2p)T)y = (IT):, where
I =(z1,...,2zn)R.

Clearly, I ¢ M, and hence IRy = Rym. For P € X}(R) \ {M}, let Q € X}(T)
such that QN R = P and Rp = T (Corollary 2). Then since JTg is principal Kang
[13, Corollary 2.7], (IRp): = (ITg): = ((IT):Tg): = (IT):Tg = JTg is principal
Kang [13, Lemma 3.4] (note that @ is a prime t-ideal of T and J is t-invertible). So
I is t-locally principal, and hence I is t-invertible Kang [13, Corollary 2.7]. Thus as
Cl(R) is torsion, (I™); = aR for some a € R and integer n > 1 Anderson, Mott &
Zafrullah [2, Theorem 3.4].

We claim that (J"); = aT. Let @ € X*(T)\{M} and P = QNR. Then Ty = Rp
(Corollary 2), and since (J"); is a t-invertible t-ideal of T, (J™)¢Tg = ((J™)TQ)ts
and hence (c¢f. Kang [13, Lemma 3.4])

()T = ((UT))") To = ((UT)"),To), = (UT)T), = (ITa)"),
= ((IRp)n)t = (I"Rp): = ((I R ) (aRp): = aRp = alg.

Also, since I ¢ M, aT ¢ M, and hence (J*);Ty = Ty = (aT)Ty. Thus
(I = Ngexir)(JMiTe = Ngexiyr)(aT)Tg = aT (cf. Kang [13, Proposition
2.8]).
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(<) Assume that htM = 1, D is a field, and T is an AWFD. Let I be a t-
invertible t-ideal of R. As in the beginning of the above proof, we may assume
that I ¢ M. Since I is t-invertible, II"! ¢ P for all P € X!(R), and hence
IT71 ¢ @ for all Q € X(T) by Corollary 2. Hence IT is a t-invertible ideal of
T. Also, since T is an AWFD and R is of type (O%), there are an integer n > 1
and a € R such that (((IT);)*), = (I"T); = aT. Note that (I"); is a t-ideal of R,
and that for each P € X}(R) \ {M} and Q € X!(T) with @ N R = P (Corollary
2), (I"Rp); = (I"Ig): = ((I"T):To): Kang [13, Lemma 3.4]. So by Kang [13,

Proposition 2.8], we have
(I")e = Npexir)({™)eRp
= (I™)Run(N{(I"):Rp|P € X'(R) and P # M})
= Ru N (N{{(I"):T|Q € X(T) and Q # M})
= aRu N (N{aTg|Q € X'(T) and Q # M})
= Npexyryallp = aR.

Hence R is an AWFD Anderson, Mott & Zafrullah {2, Theorem 3.4]. O

The proof of Theorem 4 yields the following theorem as a special case for n = 1
since R is a WFD if and only if R is weakly Krull and CI(R) = 0 (¢f. Anderson &
Zafrullah [1, Theorem]).

Theorem 5 (c¢f. Anderson, Chang & Park [5, Theorem 2.6]). If R is a pullback
domain of type (O%), then R is a WFD if and only if htM =1, D is a field, and T
is a WFD.

Remark 1. Although some parts of the proofs of Theorems 1, 3, and 4 are the same
as those of their counterparts in Anderson, Chang & Park (5], we give them here for

the completeness.

We end this paper with an example which shows that Theorems 3, 4, and 5 do
not hold without the assumption that R is of type (O*). However, we do not know
if R being of type (O0*) is best possible for Theorems 3, 4 and 5.

Ezample 6. Let K be a field of characteristic 0, X an indeterminate over K, and
Y an indeterminate over the field K(X). Let ¢ : K(X?)[Y] = K(X) be the ring
homomorphism determined by ¥ — X, and let M = ker(y). See the following
pullback diagram.
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R=p Y K) — K

!

T = K(X?)[Y] —2— T/M = K(X)

(1) M is a height-one maximal ideal of T" such that T/M = K(X).

(2) R is not of type (O0*).

(3) The map ¢ : Spec(T") — Spec(R), given by Q — Q N R, is bijective.
(4) dim(R) = dim(T) = 1.

()

5) R is not a GWFD, while T is a PID, htM =1, and K is a field.

Proof. (1) Since Y2 — X2 € M, M # (0), and hence M is a height-one maximal
ideal of T because T is a PID. In particular, ¢(T) = T/M is a subfield of K(X)
containing K(X?) and X, and thus T/M = K(X).

(2) Note that U(T) = K(X?)\ {0}; so Yu & R for all u € U(T). For if Yu € R,
then p(Yu) = Xu=a € K, and thus u = 4 ¢ K(X?), a contradiction.

(3) and (4) Since K is a field, M is a maximal ideal of R. Hence if P is a prime
ideal of R such that P # M, then there is a unique prime ideal @ of T such that
QNR =P and Tp = Rp (cf Fontana & Gabelli [9, p. 805]). This implies that ¢ is
bijective and that dim(R) = dim(T") = 1 by (1) and the fact that T is a PID.

(5) Let @ = (Y — X?)T and P = QN R. Then Y — X? is a prime element of T,
and hence @ is a prime ideal of 7. Assume that P = \/fR for some f € R. Then
@ is a unique prime ideal of T containing f by (3) and (4); so Q@ = /fT. Since
T is a PID, there is a positive integer n and u € U(T) = K(X?) \ {0} such that
f = (Y — X?)™u. Moreover, since f € R, we have o(f) = (X — X?)"u = a € K,
and hence

a

(X —X2%)n'
However, since the characteristic of K is 0, (X — X?)" ¢ K[X?], and thus

u =

a

m ¢ K(X?),

u =

a contradiction. Hence P is not the radical of a principal ideal. Therefore R is not
a GWFD Anderson, Chang & Park [4, Theorem 2.2] because dim(R) = 1. O
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