RT- PCR Analysis of Vitellogenin Gene Expression in Bombina orientalis

무당개구리 비텔로제닌 유전자의 발현의 RT- PCR 검출법

  • 계명찬 (한양대학교 자연과학대학 생명과학과) ;
  • 이명식 (한양대학교 자연과학대학 생명과학) ;
  • 강희정 (한양대학교 자연과학대학 생명과학) ;
  • 정경아 (한양대학교 자연과학대학 생명과학) ;
  • 안혜선 (한양대학교 자연과학대학 생명과학과)
  • Published : 2004.06.01

Abstract

To develop a biomarker for the monitoring of the contamination of estrogenic endocrine disrupters in the aquatic environment, reverse transcription -polymerase chain reaction (RT-PCR) analysis of vitellogenin (Vg) mRNA expression was optimized in Bombina orientalis, a Korean red bellied toad species. Based on partial cDNA sequences of both Vg and beta actin genes of B. orientalis, specific primers for RT-PCR of Vg and beta actin mRNAs were developed. Semiquantitative RT-PCR of the Vg mRNA in liver was optimized using a beta actin mRNA as an internal control in both sexes. In female RT-PCR using $1\;\mu{g}$ of the liver cDNA resulted in a linear increment in the PCR product of Vg from 18 to 34 cycles of amplification. In male, on the contrary, the RT- PCR product was first detected at 30 cycles of amplification and a linear increment was observed from 30 to 40 cycles of amplification, suggesting that male B. orientalis expresses minute amount of Vg mRNA which is a $2^{-12}$ equivalent of female. In conclusion, the optimized protocol for semiquantitative RT-PCR analysis of Vg mRNA level in B. orientalis male liver will be useful for the environmental monitoring the xenoestrogen contamination in the freshwater environment in Korea.

Keywords

References

  1. 환경생물 v.18 척추동물의 난황형성과 환경에스트로겐 계명찬;한명수
  2. 환경생물 v.21 프로테오믹스를 이용한 내분비계 교란 물질 환경독성 연구 김호승;계명찬
  3. 한국환경생물학회, 육수학회, 생태학회 공동학술대회 초록집 한국산 무당개구리(Bombina orientalis) 난황전구단백질 cDNA 염기서열 결정 및 유전자발현의 RT-PCR 검출 이명식;계명찬
  4. 한국육수학회지 v.35 한국산 도롱뇽(Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성 효과 최영주;윤춘식;박주홍;진정효;정선우
  5. 내분비계장애물질에 의한 생태영향조사 환경부
  6. Environ. Health Persp. v.111 Environmental estrogens alter early development in Xenopus laevis Bevan CL;DM Porter;A Prasad;MJ Howard;LP Henderson https://doi.org/10.1289/ehp.111-a88
  7. Sci. Am. v.272 The puzzle of declining amphibian populations Blaustein AR;DB Wake
  8. Environ. Res. v.93 Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria Bogi C;J Schwaiger;H Ferling;U Mallow;C Steineck;F Sinowatz;W Kalbfus;RD Negele;I Lutz;W Kloas https://doi.org/10.1016/S0013-9351(03)00082-3
  9. Environ. Health Persp. v.103 The need for water quality criteria for frogs Boyer R;CE Grue https://doi.org/10.2307/3432288
  10. Environ. Health Persp. v.103 no.Suppl. 4 Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations Carey C;CJ Bryant
  11. Life Sci. v.67 Involvement of tyrosine kinase and cAMP in growth hormone-induced vitellogenin synthesis in the anuran Carnevali O;G Mosconi;AM Polzonetti-Magni https://doi.org/10.1016/S0024-3205(00)00734-7
  12. J. Endocrinol. v.137 In-vitro effects of mammalian and amphibian prolactins on hepatic vitellogenin synthesis in Rana esculenta Carnevali O;G Mosconi;K Yamamoto;T Kobayashi;S Kikuyama;AM Polzonetti-Magni https://doi.org/10.1677/joe.0.1370383
  13. Mol. Cell Endocrinol. v.114 Multihormonal control of vitellogenin mRNA expression in the liver of frog, Rana esculenta Carnevali O;MG Sabbieti;G. Mosconi;AM Polzonetti-Magni https://doi.org/10.1016/0303-7207(95)03637-M
  14. Dev. Biol. v.233 Ecological developmental biology: developmental biology meets the real world Gilbert SF https://doi.org/10.1006/dbio.2001.0210
  15. Comp. Biochem. Physiol. A v.82 Vitellogenin hormonal control in the green frog, Rana esculenta. Interplay between estradiol and pituitary hormones Gobbetti A;A Polzonetti-Magni;M Zerani;O Carnevali;V Botte https://doi.org/10.1016/0300-9629(85)90495-5
  16. Toxicol. Lett. v.143 Effects of flutamide in the rat testis on the expression of occludin, an integral member of the tight junctions Gye MC;S Ohsako https://doi.org/10.1016/S0378-4274(03)00178-4
  17. Am. J. Anat. v.185 Use of the protein A-gold immunocytochemical and enzyme-gold cytochemical techniques in studies of vitellogenesis Herbener GH https://doi.org/10.1002/aja.1001850217
  18. J. Ultrastruct. Res. v.83 A correlated morphometric and biochemical study of estrogen-induced vitellogenesis in male Rana pipiens Herbener GH;Feldhoff RC;Fonda ML https://doi.org/10.1016/S0022-5320(83)90062-X
  19. Biochem. Int. v.28 Effect of seasonal acclimatization on estrogen-induced vitellogenesis and on the hepatic estrogen receptors in the male carp Herandez I;A Poblete;R Amthauer;R Pessot;M Krauskopf
  20. Nature v.390 A role for oestrogens in the male reproductive system Hess RA;D Bunick;KH Lee;J Bahr;JA Taylor;KS Korach;DB Lubahn https://doi.org/10.1038/37352
  21. Nature v.404 Quantitative evidence for global amphibian population declines Houlahan JE;CS Findlay;BR Schmidt;AH Meyer;SL Kuzmin https://doi.org/10.1038/35008052
  22. Sci. Total Environ. v.225 Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo Kloas W;I Lutz;R Einspanier https://doi.org/10.1016/S0048-9697(99)80017-5
  23. Gen. Comp. Endocrinol. v.62 The effect of temperature on the vitellogenic response in Atlantic salmon post-smolts(Salmo salar) Korsgaard B;TP Mommsen;RL Saunders https://doi.org/10.1016/0016-6480(86)90109-7
  24. Arch. Environ. Contam. Toxicol. v.32 Ecotoxicology of organisms adapted to life in temporary freshwater ponds in arid and semi-arid regions Lahr J https://doi.org/10.1007/s002449900154
  25. Anat. Rec. v.265 Leaping lopsided: a review of the current hypotheses regarding etiologies of limb malformations in frogs Loeffler IK;DL Stocum;JF Fallon;CU Meteyer https://doi.org/10.1002/ar.10009
  26. Sci. Total Environ. v.225 Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding Lutz I;W Kloas https://doi.org/10.1016/S0048-9697(99)80016-3
  27. Gen. Comp. Endocrinol. v.89 Estrogen responsiveness of vitellogenin gene expression in rainbow trout(Oncorhynchus mykiss) kept at different temperatures Mackay ME;CB Lazier https://doi.org/10.1006/gcen.1993.1031
  28. Aquat. Toxicol. v.51 Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs Mann RM;JR Bidwell https://doi.org/10.1016/S0166-445X(00)00106-5
  29. Environ. Pollut. v.114 The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs Mann RM;JR Bidwell https://doi.org/10.1016/S0269-7491(00)00216-5
  30. Biochem. Biophys. Res. Co. v.264 Estradiol-17${\beta}$ stimulates the renewal of spermatogonial stem cells in males Miura T;C Miura;T Ohta;MR Nader;T Todo;K Yamauchi https://doi.org/10.1006/bbrc.1999.1494
  31. Fish Physiology v.XIA Vitellogenesis and oocyte assembly Mommsen TP;PJ Walsh;Hoar WS(ed.);DJ Randall(ed.)
  32. Gen. Comp. Endocrinol. v.126 Environmental estrogens and reproductive biology in amphibians Mosconi G;O Carnevali;MF Franzoni;E Cottone;I Lutz;W Kloas;K Yamamoto;S Kikuyama;AM Polzonetti-Magni https://doi.org/10.1006/gcen.2002.7781
  33. Gen. Comp. Endocrinol. v.93 Seasonal changes in plasma growth hormone and prolactin concentrations of the frog Rana esculenta Mosconi G;K Yamamoto;O Carnevali;M Nabissi;A Polzonetti-Magni;S Kikuyama https://doi.org/10.1006/gcen.1994.1042
  34. Endocrinology v.132 Germ cells of the mouse testis express p450 aromatase Nitta H;D Bunick;RA Hess;L Janulis;SC Newton;CF Millette;Y Osawa;Y Shizuta;K Toda;JM Bahr https://doi.org/10.1210/en.132.3.1396
  35. Guideline 204: OECD Guidelines for Testing of Chemicals OECD
  36. Environ. Health Persp. v.103 no.Suppl. 4 Vitellogenin induction by xenobiotic estrogens in the red-eared turtle and African clawed frog Palmer BD;SK Palmer
  37. Int. Rev. Ges. Hydrobiol. v.72 Toxicity of an anionic detergent to the spawn and larvae of anurans (Amphibia) Plotner J;R Gunther https://doi.org/10.1002/iroh.19870720610
  38. Bull. Environ. Contam. Toxicol. v.53 Ecotoxicological effects of a nonionic detergent (Triton DF-16) assayed by ModFETAX Presutti C;C Vismara;M Camatini;G Bernardini
  39. Proc. Natl. Acad. Sci. USA v.89 Circulating estrogen in a male songbird originate in the brain Schlinger BA;AP Arnold https://doi.org/10.1073/pnas.89.16.7650
  40. Arch. Environ. Contam. Toxicol. v.44 The effects of anti-androgenic and estrogenic disrupting contaminants on breeding gland(nuptial pad) morphology, plasma testosterone levels, and plasma vitellogenin levels in male Xenopus laevis(African clawed frog) van Wyk, JH;EJ Pool;AJ Leslie https://doi.org/10.1007/s00244-002-1161-z