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A SIMPLE APPROACH TO THE WORKLOAD ANALYSIS
OF M/G/1 VACATION QUEUES'

NaMm K1 KiM!, YoN IL Park? AND KYUNG CHUL CHAE®

ABSTRACT

We present a simple approach to finding the stationary workload of
M/G/1 queues having generalized vacations and exhaustive service disci-
pline. The approach is based on the level crossing technique. According to
the approach, all that we need is the workload at the beginning of a busy
period. An example system to which we apply the approach is the M/G/1
queue with both multiple vacations and D-policy.
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Keywords. Infinite dam, compound Poisson input, unfinished work, multiple vacations,
D-policy, decomposition property.

1. INTRODUCTION

In this paper, we present a simple and instructive approach to finding the
stationary workload for a class of M/G/1 queueing systems under the following
assumptions.

(A.1) During a busy period customers are served continuously until there are no
customers in the system (exhaustive service discipline).

(A.2) A predetermined stopping rule, which is independent of future arrivals,
governs when to stop an idle period and start the next busy period (gener-
alized vacation).
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The workload of such a class of queues corresponds to the water level of an
infinite dam with a compound Poisson input and with the following output policy.
During a release period, the water is released at a constant rate until the reservoir
becomes empty (A.1). Then we stop releasing the water until the next release
period allowing the water level increase jumpwise. When to begin to release the
water is governed by a predetermined rule which is independent of the future
input (A.2).

A typical rule is the D-policy, under which we begin to release the water
at the instant the water level exceeds a predetermined constant D or the single
server begins to serve the customers at the instant the total workload brought in
by the customers who arrived during an idled period exceeds D (see Park and
Chae, 1999 and 2003). Note that the D-policy corresponds to the special case
M =1 and A = D in the PM-policy of Lee and Ahn’s (1998) dam model.

Suppose the water level is monitored not continuously but at discrete random
points in time. The inter-monitoring times are assumed to be iid exponential
by Lee and Lee (1993) and 4id general random variables by Park et al. (2000).
These models correspond to the M/G/1 queue with both D-policy and multiple
vacations: 4td exponential vacations in the former and #id general vacations in
the latter.

In the references cited thus far, authors solve Chapman-Kolmogorov equations
to obtain desired results. Our approach, on the other hand, is based on the level
crossing technique (LCT), which is simpler and intuitively appealing (see, e.g.,
Kim and Lee, 2002).

By using LCT, we show that desired results can be obtained via the workload
at the beginning of a busy period for the M/G/1 queues satisfying (A.1) and
(A.2). For such queues, we also prove the so-called decomposition property.

Then as a demonstration of our approach, we find the stationary workload of
the M/G/1 queue with both D-policy and multiple vacations. It should be noted
that the model of Park et al. (2000) corresponds only to the idle period of the
M /G /1 queue with D-policy and multiple vacations.

Readers who are interested in the queue length distribution of the M/G/1
queue with D-policy are referred to Chae and Park (2001) and Dshalalow (1998).
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2. LCT BASED APPROACH

2.1. Preliminaries

We consider M/G/1 queues satisfying (A.1) and (A.2). In an M/G/1 queue,
customers arrive according to a Poisson process with a rate A. The service times
(or the workloads brought in by the customers) are iid general random variables,
denoted by S, and independent of the arrival process. We assume that p =
AE(S) < 1 to guarantee the stationary workload process.

Let W and W*(0) denote the stationary workload and its Laplace-Stieltjes
transform (LST), respectively. We can express W*(0) as

W*(6) = P(I)W*(8|I) + P(B)W*(0|B) (2.1)

where P(I) (P(B)) denotes the probability that the server is idling (busy) and
W*(6/I) (W*(0|B)) denotes the corresponding conditional LST. It is well known
that

P(B)=p=AE(S)and P(I) =1 —p. (2.2)

2.2. Applying LCT to W

The rationale of LCT is as follows. The rate of transitions from ‘W < z’ to
‘W > z’, # > 0, should be balanced by the rate of transitions from ‘W > z’
to ‘W < z’, where the former is called the upcrossing rate and the latter the
downcrossing rate.

During a busy period both upcrossings and downcrossings are possible but
during an idle period only upcrossings are possible. The downcrossing rate is
known to be P(B)dFp(z)/dz, > 0, where Fg(z) denotes the conditional (cumu-
lative) distribution function of W given that the server is busy (see Cohen, 1977;
Lee, 1998, p.419). Note that

W*(9|B) = / e Y dFg(x). (2.3)
0
On the other hand, W*(8|I) is given by
o0
W*(6|I) = Pr(0) +/ e Y dFy(z), (2.4)
0

where Pr(0) denotes the conditional probability that W = 0 and Fy(x) denotes
the conditional distribution function of W both given that the server is idling.
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Upcrossings occur only when customers arrive. We can express the upcrossing
rate as follows.

AP(B) /0 “P(S > ¢~ y)dF5(y)

FAP(I) {P,(O) .P(S > 1)+ /0 P(S>z-— y)dF,(y)} . (2.5)

Note that the two integrals in (2.5) are the so-called convolutions. Thus, the
LST of (2.5) can be expressed in terms of (2.3) and (2.4) as

AP(B)W*(0|B){1 — §*(0)}0~! + \AP(DW*(O|1){1 — S*(8)}07Y,  (2.6)

where {1 — 5*(8)}/0 = [;° e % P(S > z)dz and S*(9) is the LST of S.
Finally, we equate (2.6) with P(B)W*(6|B) which is the LST of the down-
crossing rate. Then substituting (2.2) and solving for W*(8|B), we have that

W O1B) = Wiy (6)- S5 - WD) (2.7

wher
- 1774 9) = M 2.8
IW/G/l( )"’9_)\_’_}\5*(0) ( : )

is the workload LST of the standard M/G/1 queue.

2.8. The decomposition property

Substituting (2.2), (2.7), (2.8) into (2.1) and simplifying the result, we have
that
W*(6) = Wiyyop OW*OID). (29)

(2.9) is called the decomposition property. Due to (2.9), finding W*(6) reduces to
finding W*(0|I) since W}, /G /1(9) is already known. Sometimes, however, finding
W*(0|B) is easier than finding W*(6|I). In such cases, we can make use of the
following relation which is obtained by substituting (2.9) into (2.7):
0E(S)
1—5%6)
One way to find W*(0|B) is as follows. Let Q and Q*(6) denote the workload
and its LST at the beginning of a busy period, respectively. Then, based on the
delay cycle analysis (see, e.g., Takagi, 1991, p.27), we have that
1-Q*(6)
OE(Q)

W*(6) = W*(6]B) - (2.10)

w*(6|B) = W‘\*//c/l(é’) ) (2.11)
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3. NW*(#) FOrR THE M/G/1 QUEUE WITH D-POLICY AND MULTIPLE
VACATIONS

3.1. D-policy and multiple vacations

Let Vi, Vs, ... be iid random variables which are independent of both the
arrival process and the service times. As soon as the system becomes empty, the
server leaves for a vacation of length V;. If the workload accumulated during V;
exceeds D when he returns, he immediately begins to serve the customers. If not,
he leaves for another vacation of length V5, and so on until the total workload
exceeds D when he returns from a vacation.

A useful notion introduced by Lee et al. (1994) is the grand vacation. The
length of the i** grand vacation, denoted by G, is defined as the following stopped

random sum:
K;

Gi=> Vi, i=12,..., (3.1)
k=1
where the stopping time Kj; is defined as follows: K; = 1 if some customers arrive
during V;1; and K; = k > 2 if no customers arrive during V;;, ..., V;;_; but some
arrive during Vii.

Note that the customers arriving during G; are those arriving during Vg, .
Thus the probability generating function (PGF) of the number of arrivals during
G; equals the conditional PGF of the number of arrivals during a vacation given
that the number of arrivals during this vacation is at least one. Therefore the
PGF of the number of arrivals during G; is

V(A = Az) — V*())
1-ve(n)

(3.2)

where V*(6) is the common (and unconditional) LST of iid V’s. Note that
V*(X — Az) is the unconditional PGF of the number of Poisson arrivals (with a
rate A) during a vacation and that V*()) is the probability of no arrivals during
a vacation, thereby (3.2) is the conditional PGF.

Let U; denote the workload accumulated during G;. Since by definition,
G1,G,, ... are iid random variables. so are U}, Us, ... Let U*(0) denote the com-
mon LST of #d U’s. Recall that the service times are independent of both the
arrival process and the vacation times. Thus we have that

_ VA= AST(9) - V(Y

U*(6) )

(3.3)
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which is obtained by substituting S$*(0) for z in (3.2), and that

_ pE(V)
E(U) = o)

3.2. Main results

Now we consider a renewal process whose interrenewal times consist of #id
U’s. Let m(-) denote the renewal function. Then we can express ) as a stopped

random sum as
N

Q=>"U; (3.5)
i=1
where the stopping time N has the following distribution and the expectation:
n—1 n
P(N=n)=P<ZUi§D,ZUi>D>, (3.6)
i=1 i=1
E(N) =m(D) + 1. (3.7)

Note that m(D) in (3.7) is the expected number of renewals occurred within

(0, D] and 1 represents the first renewal within (D, c0). By the Wald’s equation,
we have that

E(Q) = E(N)E(U). (3.8)

In addition, according to Park (2000), we have that
rD
P> z)=PU > z) +/ P(U >z —y)dm(y), z > D. (3.9)
0

Let Fqo(z) and Fy(z) denote the distribution functions of (2 and U, respec-
tively. Since Fo(z) = 0 for z < D, Q*(0) is defined as [7° e~9dFq(z). Thus
from (3.9), we have that

"(0)
= [T+ [ e /y :dFU(x—wdm(y)

D =D

0 D
= / e‘gxdFU(.T) - / e‘gIdFU(m)
0 0

D o0
N / - / e 0@V gF, (2 — y)dm(y)
y=0 r=D
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D D o0
= U*(0) - / e T dFy (z) + / e 0 / e Y dF (2 — y)dm{y)
0 =0 =y

D D
/ 0 / oDy (x — y)dm(y)
y=0 z=y

:U(H)—{/OD 9 Fy (s / /Iy “PdFy(a - y)dm(y )}

D
+U*(9) /0 e Wdm(y)

D

D
= U*(e)—/o e”‘”‘dm(ac)+U*(9)/0 e~ dm(y)

D
{1 - U0} /0 = dm(z)

= U*(9) {1 + /OD e—"fdm(x)} - '/ODe“HIdm(:E). (3.10)

From (2.11), (3.3), (3.4), (3.8), (3.10), we have that

W*(6|B)

- W&/G/l(g){ 9E(U) E(N)
. 1-V*(A=AS*(8))1(1=5*(0)) [1+ [ e ?=dm(z
- WM/G/l(B)[{A NS OV E(V H 0E(S) }{ BE(N) } (3.11)

Then, from (2.7), (2.9), (3.11), we have that

e _[L= VA= AS"0)] [ 1+ [P e dmia)
Wl = [{A—)\S*(@}E(V)} { E(N) }

) , 1-V*A =25 0] [1+ [P e~%dm(z) ‘

1- U*(H)} { 1+ [P e 0%dm(x) }

(3.12)

3.3. Remarks on main results

We interpret (3.12) as follows. The workload observed at a random point
during an idle period is the sum of two independent random variables: one is
the workload at the beginning of the ongoing grand vacation and the other is
the workload brought in by those (if any) who arrived during the elapsed grand
vacation. Note that no customers arrived during the preceding vacations (if any)
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belonging to the ongoing grand vacation. Thus the customers who arrived during
the elapsed grand vacation must be those who arrived during the elapsed time of
the ongoing vacation. The LST of the elapsed vacation is {1-V*(6)}/{60E(V)}.
Then substituting ‘A — Az’ for 6, we have the PGF of the number of arrivals
during the elapsed vacation. Substituting again S*(6) for z, we have the LST
of the workload brought in by these arrivals. This explains the first term at the
right hand side of (3.12).

The second term can be explained by the renewal reward theorem. The
denominator, E(N), is the expected number of grand vacations in an idle period.
The numerator is of the form E(E -, e79%i), where X; denotes the workload at
the beginning of the i"* grand vacation. Since P(X; = 0) = 1, we have that
e~ %0 = 1. Then we have that

n=2
o0
=Y P(N= /Ze"zp(z<x <z +dz|N =n)
n=2 =2
/ _’*”ZZP =n,z < X; < z+dz)
n=2 =2

= /0 ? e %% dm(z).

We consider two special cases as follows. For the M/G/1 queue with multiple
vacations (and without D-policy), the last term of (3.13) (and of (3.11), (3.12))
disappears since D = 0 and E(N) = 1.

For the M/G/1 queue with D-policy (and without multiple vacations), on the
other hand, two modifications are necessary. First, the middle term at the right
hand side of (3.13) disappears since no customers can arrive during a vacation
of length zero. Secondly, in the last term of (3.13), E(N) becomes the expected
number of arrivals during an idle period and m(-) becomes the renewal function
of the renewal process whose interrenewal times consist of iid service times.
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