Journal of the Korean Statistical Society (2004), 33: 2, pp 149-157

ROBUST UNIT ROOT TESTS FOR SEASONAL
AUTOREGRESSIVE PROCESS!

Yu-JIN OH! AND BEONG-S00 So!

ABSTRACT

The stationarity is one of the most important properties of a time se-
ries. We propose robust sign tests for seasonal autoregressive processes to
determine whether or not a time series is stationary. The proposed tests are
robust to the outliers and the heteroscedastic errors, and they have an exact
binomial null distribution regardless of the period of seasonality and types
of median adjustments. A Monte-Carlo simulation shows that the sign test
is locally more powerful than the tests based on ordinary least squares esti-
mator (OLSE) for heavy-tailed and/or heteroscedastic error distributions.
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1. INTRODUCTION

We consider the problem of testing of the random walk hypothesis for seasonal
time series. There have been several researches in the literature on this subject
such as Dickey et al. (1984), Hylleberg et al. (1990), So and Shin (1999a) and So
(2001). However most of these tests are based on the OLSE and have complicated
non-standard null distributions depending on the type of mean adjustment and
the period of seasonality. Furthermore the usual OLSE-based tests suffer from
size distortion and power loss by outliers for heavy-tailed errors and the normality
and/or the finite variance assumptions for the innovations may be easily violated
in practice. Thus we need new tests for seasonal unit root which have simple null
distribution and are robust to possible outliers from heavy tailed errors. As a
simple robust alternative to OLSE-based test. Campbell and Dufour (1995) first

Received May 2003; accepted November 2003.

'This work was supported by KOSEF through the Statistical Research Center for Complex
Svstems at Seoul National University.

"Department of Statistics. Ewha Womans Universitv. Seoul 120-750. Korea



150 Y. J. On AxD B. S. So

proposed sign-based test for a random walk hypothesis in the simple no mean
model. Then So and Shin (2001) extended the sign test to a mean model and
established several important properties of the test such as the exact binomial
null distribution, the consistency, the robustness to heavy-tailed errors, and the
invariance. In this paper we extend the sign test to a seasonal model. The
sign tests follow a binomial null distribution so it leads to an exact test. The
asymptotic distribution of the test statistics is normal regardless of the type
of mean adjustment and the period of seasonality, thus separate tabulations of
critical values are not required.

This paper is organized as follows. In Section 2, we introduce the sign tests
for seasonal AR (autoregressive) processes and investigate the key properties of
the tests such as finite sample null distribution, consistency, and invariance. In
Section 3, we conduct the simulation study which shows that the sign tests are
locally more powerful than the OLSE-based tests for heavy-tailed and/or ARCH
(Autoregressive Conditional Heteroscedasticity) model. All proofs are given in
Appendix.

2. TEST STATISTICS AND PROPERTIES

Consider the seasonal AR(1) process with mean

yt:Mt+uta (2 1)
U = pUs—qg + €, t=1,...,n

where y; is an observation at time ¢, p is the unknown parameter, y_44+1,Y_412, - -
yo are the initial conditions, d is the period of seasonality, and p¢ = pyq,t =
1,...,n—d. A time series is a quarterly data when d = 4, and it is a monthly data
when d = 12. We also suppose e; of model (2.1) satisfies the following Assumption
2.1. Let 7y = o(ys, Yt—1,- - - , Y—d+1) be a o-field generated by (ys, Ye—1,- .-, Y—d+1)-

AssuMPTION 2.1. {e;} is a sequence of errors such that P(e; > 0|F_;) =
1/2 and P(e; = 0|F;—1) = 0.

We have E(sign(e;)|F;-1) = 0 directly from Assumption 2.1 where sign(e;) = 1
for e, > 0 and sign(e;) = —1 for e; < 0. Assumption 2.1 is satisfied for inde-
pendently and identically distributed (iid) errors following arbitrary continuous
symmetric distributions. The time series (2.1) is stationary when |p| < 1, but is
nonstationary when |p| > 1. Especially, y; is a seasonal random walk when p = 1,
and is of particular interest in economic and financial time series data. Thus we
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are interested in testing the random walk hypothesis that Hy : p = 1 against the
stationary alternative that H; : |p| < 1. In order to motivate the sign test, we
first take the signs of each components of the Student’s ¢-statistic for Hy: p = 1
and propose the test statistic,

n

Sin = Z sign(ys — ye—a)sign(yi—a — He—d), (2.2)

t=1
where fi, represents the estimate of the median of the #" data point y. In
estimating u; we consider two different types of median adjustments, namely
common and seasonal median respectively. For the common median model with

pe =p, t=1,...,n, let [i.; be the common recursive median of y;, namely Ji.;
is the median of y1,ys, ..., y;. For the seasonal median model with py = pyyg,t =
1,...,n—d, let s ; denote the seasonal recursive median of y;, namely ji, ; is the

median of the observations in the same season until the #** observation. So and
Shin (2001) point out that the recursive mean or median adjustment improves the
power of the unit root test. The reader is also referred to So and Shin (1999b) and
Shin and So (2001) for more details of the merits of recursive mean adjustment.
The statistical properties of the test statistics are summarized in the following
Theorem 2.1. Here BIN(n,p) stands for the binomial distribution with n trials
and success probability p.

THEOREM 2.1. Consider model (2.1) with Assumption 2.1 and suppose y; —
i has no atoms at zero. If p = 1, then we can represent the test statistic (2.2)
as San = Y_p_, sign(e;)sign(y;_4 — fi—q), and we have

(@) {Sa¢, Fi}iey s a martingale,
(b) (Sgn +n)/2 ~ BIN(n,0.5).

From Theorem 2.1, therefore, if Sy, < 2BIN, (n,0.5) — n, then we reject

the seasonal random walk null hypothesis. Since we have Sg,/v/n 2N (0,1)
due to the central limit theorem as n — oo, we reject the null hypothesis, when
Sdn/vn < —zq where —z, stands for a lower ath quantile of the standard normal
distribution. Now we examine some properties of the seasonal sign test statistic
Sq: the invariance to monotone data transformation, and the consistency.

PROPOSITION 2.1. Consider the seasonal AR model (2.1) with Assumption
2.1. Then the value of the seasonal sign test Sy, is invariant under any strictly
monotone data transformations yy — hiy). t=1..... 7.
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THEOREM 2.2. Let n = md and let the stationary processes {yi+td}?;61, 4=
1,...,d be generated by the seasonal AR model (2.1) with |p| < 1 and the iid errors
{€i+td}?;61; i = 1,...,d respectively. Let F;(-) be the cumulative distribution
Junction (cdf) of e; such that Fy(-) = Fy_q(-). If

E[sign(ut){Ft((l — PJuy) — Ft(O)}] >0, (2.3)
then the test is consistent as n — oo.

One simple sufficient condition for (2.3) is that F'(-) is continuous and strict
increasing function around zero. Specifically it means that fi(z;) > 0 for z, €
[—e, €] for some € where f¢(-) is a probability density function of ;. We note that
above conditions for consistency is satisfied for a wide class of heavy-tailed error
distribution with zero median when |p| < 1.

3. SIMULATION

In this chapter, we conduct a set of Monte Carlo experiments to investigate
the finite sample performance of the seasonal sign tests, Sg,, for testing the
seasonal unit root null hypothesis against the stationary alternative.

We consider the seasonal AR(1) process with mean

Yt = pt + Uy
K ’ (3.1)
U =pug_qg+e, t=1,...,n
where y; is an observation at time t, and the initial values y4, t = —-d + 1,—d +
2,...,0, are set to zero. We use fi.; and [is¢ to estimate y;, and Sf_j’n and S;,n

denote the corresponding test statistics.

In addition to the standard normal distribution we consider for e; the double
exponential distribution setting the location parameter to 0 and the scale param-
eter to 1, the Pareto distribution setting the scale parameter to 1 and the shape
parameter to 1/2, and the standard Cauchy distribution to examine the effects
of heavy-tailed errors on both tests. The double exponential distribution has a
finite variance, but the standard Cauchy distribution has an infinite variance.
The Pareto distribution has both infinite mean and variance. We also exam-
ine the performances of the sign test under ARCH(1) errors that in model (3.1)
e = (1+ O.Qe?_d)l/Qet where ¢, ~ N{0,1). We leave the detailed study of the
condition for the consistency of the sign test for ARCH(1) errors for future work.
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TABLE 3.1 Empirical sizes(%) and size-adjusted powers(%) of the mean-adjusted tests for
model y, = pyi—q + e+ (The number of replications is 10,000)

Common Seasonal

d n size e p DHF° §7 DHF?® 55,
4 120 4.12 N({0,1) 1.00 4.99 4.12 5.07  4.10
0.99 5.70  5.73 5.09  5.54

0.95 20.28 15.70 8.53 12.03

0.90 53.39  30.77 16.23  20.88

DE 1.00 516  4.07 6.01 4.18

0.99 6.99 7.56 552  6.62

0.95 22.59 30.86 8.01 20.03

0.90 57.99 58.00 14.14 36.06

Cauchy 1.00 3.06 4.14 15.02  4.08

0.99 5.85 49.08 4.19 20.87

0.95 22.43 94.46 0.73 44.03

0.90 78.08 98.78 1.16 56.83

Pareto  1.00 0.45 4.07 15.81 4.12

0.99 10.65 94.90 4.26 59.42

0.95 7745 98.12 0.58 52.05

0.90 94.36 95.95 1.22 47.71

NOTE : “size” represents the exact size of S, and S5 ,. DHF® and DHF* denote common and
seasonal mean adjusted tests, respectively. DE represents the double ezponential distribution,
Cauchy is the standard Cauchy distribution, and Pareto denotes the Pareto distribution with
the zero median and the shape parameter 0.5.

Because the OLSE-based test of Dickey et al. (1984; DHF hereafter) is most
widely used in practice, we investigate its size and power and compare them with
those of the seasonal sign test. We set the nominal level as 5% for every set of
experiments, but sometimes the size of Sy, does not meet 5% because of the
discreteness of binomial distribution. The exact size depends on the sample size
n by Theorem 2.1. For example, when n = 120, the nominal level is 4.12%. We
exhibit Table 3.1 for heavy-tailed disturbances and Table 3.2 for ARCH distur-
bances for the case of d = 4, and n = 120. The common characteristic of Table
3.1 and Table 3.2 is that in contrast to DHF the size of Sy, is quite close to its
exact level for all error types and median adjustments. In Table 3.1 the powers
of S4, are locally higher than those of DHF. when p is close to 1. Therefore Sy,
seems to be locally more powerful than DHF under the heavy-tailed disturbances.
In the seasonal model with Cauchy and Pareto distributions, the powers of the
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DHF test show unusual pattern because of extreme values. Table 3.2 displays the
simulation result under the ARCH errors, and the sizes of DHF are 9.84% and
9.66% for common and seasonal median, respectively. They are much distorted
from their nominal level, 5%. However, the sizes of Sq ,, are 4.17% and 4.13%, and
are close to their exact nominal level 4.12%. We also conducted the simulation
study for other cases of d = 2, 4, and 12, and n = 40, 120, 180, and 240, and the
general shapes of simulation results were similar to the previous case and thus
omitted. Thus in contrast to the OLSE-based tests which suffer from severe size
distortion and power loss for heteroscedastic and/or heavy-tailed errors, the sign
test Sy, seems to be robust in the sense that it has not only stable size but also
reasonable power in most cases.

TABLE 3.2 Empirical sizes(%) and size-adjusted powers(%) of the mean-adjusted tests for
seasonal AR(1) mean model with ARCH error (The number of replications 1is 10,000)

Common Seasonal
d n size e p DHF® S; . DHF® S,
4 120 4.12 ARCH 1.00 9.84 4.17 9.66 4.13
0.99 5.97 6.17 5.02 6.17
0.95 1545 18.43 7.81 13.09
0.90 38.00 35.62 13.84 21.49

NOTE : Model y: = pyr—a + es,ee = (1 +0.9¢?_,)%¢;, and e; ~ N(0,1). See the note to Table
3.1.

4. CONCLUSION

The sign tests follow an exact binomial null distribution, regardless of the
types of mean adjustment and the period of seasonality. Simulation results under
the heavy-tailed and ARCH errors show that the seasonal sign tests are robust
and locally more powerful than the standard OLSE-based test. Thus the sign
tests seem to provide useful robust alternative to OLSE-based tests not only for
random walk hypothesis, as shown in Campbell and Dufour (1995) and So and
Shin (2001), but also for the seasonal AR models.

ACKNOWLEDGEMENTS

The authors appreciate the valuable comments of the referees who also sug-
gested the Pareto distribution for heavy tailed errors that led us to prepare an



RoBUST SEASONAL UNIT ROOT TESTS 1

(W2
Ct

improved paper.

APPENDIX

PROOF OF THEOREM 2.1. For convenience, let vy = y; — ;.

fn—l)

n-—1

= sign(vn_q) E(sign(e, )| Fn1) + > sign(eq)sign(v;_a).
t=1

(@) E(Sgn|Fny)=FE (Z sign(ey)sign(ve_g)
t=1

The first part of the right hand side is equal to zero because we have
E (sign(ep)|Fn—1) = 0 from Assumption 2.1, and the second part is Sy,
from (2.2).

(b) Let sq; = sign(e;)sign(vi_q) = sign{e;vy_g). From Assumption 2.1 and
the assumption that y; — i; has no atoms at zero. we have that P(sg, =
—1|Fi-1) = P(sas = 1|Fim1) = 1/2 and Sy, = > Sa- Let M(7) be the
moment generating function (MGF) of Sy, then

M(’r) . (eTSd’") =F (fl CT-Sd_t> =F {E(ﬁe”‘“
t=1
n—1
Fn-1 e’ sdt
)|

t=1

n—1
= E {E <eTsdv" H eTsd.t
t=1
1 n—1 1 2 n—2
= 5 (e—T +6T)E (H ers,z,f) — {5 (B_T +€T)} E (He”d~f)

t=1 t=1

- )

The MGF of (S4, +n)/2 is

srar(Z) = e d Lot ey U 2 [ Lyl
) <o

This is also the MGF of the binomial distribution with number of trials n
and the probability of success 1/2. O

PROOF OF PROPOSITION 2.1. Let ji; be the median of A(y,)..... h{y:). Since
sign(ye — Yr—a)sign(ye — fie-a) = sign(h(yr) — hlyr—q))sign(hlys) — ju—q) for all
t=1.....n from the strict monotonicity of h(-). we get the result. O
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PROOF OF THEOREM 2.2.

Sd,n

1 n
= = sign(y — ye—a)sign(yi—a — fi—a)
n n

t=1

1o . . -
= - > sign(e; — (1 = p)(ye—d — p—a))Sign(vi—a — Fir—a)-
t=1

Let g(yi—q) = (1—p)(yt—a—pt—q) and Sy pn/n = Ap+ By, where 4, = n‘lden—Bn,
and

n
By =n""Y_ E{sign(e; — 9(ys-a))sign(yi—q — At—a)|Fr-1} -
t=1

Since nA,, is martingale, we have nFE|A,| < 00, and for any § > 0 as n — oo,

P|An| 2 6]

P[n|Ay| > nd]
PlinAy| > né]
(né) " 'EjnA,| — 0.

i

(A

And we can represent B, = n~' Y™ sign(ys_q — fe-a){1 — 2 Fi_a(9(yr_a))},
because

E {sign(e: ~ g(yt-a))|Ft-1}
= P{sign(e; — g(y1—a)) = 1|F-1} — P{sign(e; — g(ys—q)) = —1|F1—1}
= P{e; > g(yi-a)|Fe-1} — P{e: < g(ye—a)| Fi-1}
=1 F—a(9(yt-a)) — Fi-a(9(yt-a))-

If we let B, = C,, + D,, where C, = B, — Dy, and D,, = n"! S sign(yi—q —
/J:t—d){l - 2-Ft~d(g(yt—d))}7 then

|Cn| = ‘% Z {1-2F_a(9(ys-a)) } {sign(yi—q — Hs—a) — sign(y;—q — ut—d)}'
=1

1. ~ .
< ]E > {sign(ys—a — fi—a) — sign(ys—a — m_d)}l,
t=1
since —1 <1 —2F;_4(g(ys—q)) < 1. Therefore

1 n . N )
E(C) < 33 B(|sign(ye—a = fir-a) - sign(yr—a = u-a)|)
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2 ~
< n Z P(lytﬂi = pt—d| < lit-d — lthAdl)
t=1
2 n 2
s - 2 P(|fi—q — pr1—al > €) o > P(lye—a— p-al <€) — 0

for any € > 0, since iy = py + 0p(1) and y;—g — py—4 has no atoms at zero from
the assumption. From this formula and the stationarity of y; we have

Sd,n

= op() +op(1) + ;ll- > " sign(ye—a — p—a){1 — 2 F,_a(9(ye-a))}

t=1
= Elsign(yt—q — t—a){1 — 2F—a(g(yi—a))}] + 0p(1)

by the weak law of large numbers. Let £ = E[sign(y: — p){1 — 2 Fy(g(y:))}]. If
¢ <0, then

2BIN,(n, &) —
P{——-—S"”";" < BINa(n,%)} _pln (ng)=m

n n

:P{§+Op(l)§—%+0<%)}—*—>1asn—>oo.

The condition £ < 0 is equivalent to E [sign(u;){ F;((1 — p)u;) — F3(0)}] > 0, since
g(y:) = (1 — p)uy and F3(0) = 0.5. This completes the proof. OJ
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