DOI QR코드

DOI QR Code

Exchange Coupling in Massively Produced Nd2Fe14B+Fe3B Nanocomposite Powders

  • Yang, Choong Jin (Research Institute of Industrial Science & Technology (RIST), Nanotechnology Research Lab) ;
  • Park, Eon Byung (Research Institute of Industrial Science & Technology (RIST), Nanotechnology Research La) ;
  • Han, Jong Soo (Research Institute of Industrial Science & Technology (RIST), Nanotechnology Research Lab, Dept. of Physics, Youngnam National University) ;
  • Kim, Eung Chan (Dept. of Physics, Youngnam National University)
  • Published : 2004.06.01

Abstract

Magnetic properties of $Nd_4Fe_{77.5}B_{18.5}$ compound in term of exchange coupling between $Nd_2Fe_{14}B$ and $Fe_3B$ magnetic nano crystals in melt spun powders were characterized by varying the quenching speed in mass production line. The exchange coupled phenomenon was characterized as functions of nano crystal size and volume fraction of each magnetic phase which was possible by employing Henkel plot (${\delta}M$) and refined Mossbauer spectroscopy. The optimized magnetic properties obtained from the present volume production line were: $B_r= 11.73 kG,{_i}H_c/ = 3.082 kOe$, and $(BH)_{max} = 12.28 MGOe.$ The volume fraction of each magnetic phase for those conditions giving the grain size of 10 nm were ${\alpha}-Fe; 4.2%, Fe_3B; 60.1 %$, and $Nd_2Fe_{14}B; 35.7%$. The superior magnetic properties in the $Nd_2Fe_{14}Fe_3B$ based nanocomposites were confirmed to be dependant on the volume fraction of $Fe_3B$.

Keywords

References

  1. IEEE. Trans. Magn. v.29 R.Skomski;J.M.D.Coey https://doi.org/10.1109/20.281077
  2. J. Magn. Magn. Mater. v.153 R.Fisher;T.Schrefl;H.Kronmuler;J.Fidler https://doi.org/10.1016/0304-8853(95)00494-7
  3. J. Appl. Phys. v.64 G.C.Hadjipanayis;W.Gong https://doi.org/10.1063/1.342307
  4. J. Magn. Magn. Mater. v.186 C.J.Yang;E.B.Park
  5. IEEE. Trans. Magn. v.35 C.J.Yang;E.B.Park;Y.S.Hwang;E.C.Kim https://doi.org/10.1109/20.800514
  6. J. Phys. v.7 Z.H.Cheng;B.G.Shen;M.X.Mao;J.J.Sun;F.W.Wang;Y.D.Zhang
  7. Phys. Rev. B. v.47 L.X.Liao;Z.Altounian;D.H.Ryan
  8. J. Phys. v.11 J.M.Breton;S.Steyaert
  9. J. Magn. Magn. Mater. v.152 J.Panagiotopoulos;L.Withanawasam;G.C.Hadjipanayis https://doi.org/10.1016/0304-8853(95)00467-X
  10. IEEE. Trans. Magn. Magn. v.35 T.Schrefl;J.Fidler https://doi.org/10.1109/20.800483
  11. J. Magn. Magn. Mater. v.124 T.Schrefl;H.F.Schmidts;J.Fidler;H.Kronmuler https://doi.org/10.1016/0304-8853(93)90123-J
  12. Mat. Let. v.24 C.J.Yang;E.B.Park;S.D.Choi https://doi.org/10.1016/0167-577X(95)00126-3
  13. J. Appl. Phys. v.29 E.P.Wohlfarth
  14. IEEE. Trans. Magn. v.25 no.5 P.E.Kelly;K.O.Grady;P.I.Mayo;R.W.Chantrell https://doi.org/10.1109/20.42466
  15. J. Magn. Magn. Mater. v.100 Y.D.Zhang;J.I.Budnick;J.C.Ford;W.A.Hines https://doi.org/10.1016/0304-8853(91)90810-W
  16. J. Appl. Phys. v.53 R.C.Taylor;A.Gangulee https://doi.org/10.1063/1.330813
  17. Phys. Rev. B. v.32 R.Kamal;Y.Andersson https://doi.org/10.1103/PhysRevB.32.1756
  18. Phys. Rev. v.29 J.F.Herbst;J.J.Croat
  19. Acta Cryst. v.C40 C.B.Shoemaker;D.P.Shoemaker;R.Fruchart
  20. Sol. Stat. Comm. v.50 D.Givord;H.S.Li;M.Moreau https://doi.org/10.1016/0038-1098(84)90315-6