Rhizobium meliloti와 R. leguminosarum 의 dctA 프로모터에서 DctD 및 NtrC가 중재된 초 in vitro 전사활성

DctD- or NtrC-mediated in vitro Transcriptional Activation from Rhizobium meliloti and R. leguminosarum dctA Promoter

  • 발행 : 2004.06.01

초록

The gene product of dctD (DctD) activates transcription from the dctA promoter regulatory region by the $\sigma^{54}$ -holoenzyme form ofRNA polymerase ($E\sigma^{54}$ ) in Rhizobium meliloti and R. leguminosarum. The Escherichia coli integration host factor (IHF) stimulated DctD-mediated activation from the dctA promoter regulatory region of R. leguminosarum but not R. meliloti. In the absence of UAS, IHF inhibited DctD-mediated activation from both of these promoter regulatory regions. IHF also inhibited activation from R. leguminosarum dctA by nitrogen regulatory protein C (NtrC), another activator of $E\sigma^{54}$ but not by one which lacks a specific binding site in this promoter regulatory region. IHF, however, stimulated NtrC-mediated activation from the R. meliloti dctA promoter. Upon removal of the UAS, IHF inhibited NtrC-mediated transcription activation from the R. meliloti dctA promoter regulatory region. These data suggest that IHF likely faciliates productive contacts between the activators NtrC or DctD and $E\sigma^{54}$ to stimulate activation from dctA promoter.

키워드

참고문헌

  1. Microbiol. Mol. Biol. Rev. v.65 $P_{II}$ signal transduction proteins, pivotal players in microbial nitrogen control Arcondeguy, T.;R. Jack;M. Merrick https://doi.org/10.1128/MMBR.65.1.80-105.2001
  2. J. Bacteriol. v.171 Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C₄-dicarboxylate carrier Engelke, T.;D. Jording;D. Kapp;A. Puhler https://doi.org/10.1128/jb.171.10.5551-5560.1989
  3. J. Bacteriol. v.154 Symbiotic properties of C₄-dicarboxylic acid transport mutants of Rhizobium leguminosarum Finan, T. M.;J. M. Wood;D. C. Jordan
  4. Cell v.55 Integration host factor: a protein for all reasons Friedman, D. I. https://doi.org/10.1016/0092-8674(88)90213-9
  5. Mol. Microbiol. v.13 Rhizobium meliloti DctD, a 54-dependent transcriptional activator, may be negatively controlled by a subdomain in the Cterminal end of its two-component receiver module Gu, B.;J. H. Lee;T. R. Hoover;B. T. Nixon https://doi.org/10.1111/j.1365-2958.1994.tb00401.x
  6. Cell v.63 The integration host factor stimulates interaction of RNA polymerase with NIFA, the Transcriptional activator for nitrogen fixation operons Hoover, T. R.;E. Santero;S. Porter;S. Kustu https://doi.org/10.1016/0092-8674(90)90284-L
  7. J. Bacteriol. v.174 The central domain of Rhizobium leguminosarum DctD functions independently to activate transcription Huala, E.;J. Stigter;F. M. Ausubel https://doi.org/10.1128/jb.174.4.1428-1431.1992
  8. J. Biol. Chem. v.269 Constitutive ATP hydrolysis and transcription activation by a stable, truncated form of Rhizobium meliloti DCTD, a sigma 54-dependent transcriptional activator Lee, J. H.;D. Scholl;B. T. Nixon;T. R. Hoover
  9. J. Bacteriol. v.171 Conservation between coding and regulatory elements of Rhizobium meliloti and Rhizobium leguminosarum dct genes Jiang, J.;B. H. Gu;L. M> Albright;:B. T. Nixon https://doi.org/10.1128/jb.171.10.5244-5253.1989
  10. Microbiol. Rev. v.53 Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism Kustu, S.;E. Santero;J. Keener;D. Popham;D. Weiss
  11. Mol. Microbiol. v.6 Tandem DctD-binding sites of the Rhizobium meliloti dctA upstream activating sequence are essential for optimal function depite a 50- to 100-fold difference in affinity for DctD Ledebur, H.;B. T. Nixon https://doi.org/10.1111/j.1365-2958.1992.tb01783.x
  12. Experiments in molecular genetics Miller, J. H.
  13. J. Biol. Chem. v.256 Purification and properties of the Escherichia coli protein factor required for lambda integrative recombination Nash, H. A.;C. A. Robertson
  14. J. Biol. Chem. v.266 Purification of the alternative factor, 54, from Salmonella typhimurium and characterization of 54-holoenzyme Popham, D.;J. Keener;S. Kustu
  15. Science v.243 Function of a bacterial activator protein that binds to transcriptional enhancers Popham, D. L.;D. Szeto;J. Keener;S. Kustu https://doi.org/10.1126/science.2563595
  16. Genes Dev. v.7 Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation Porter, S. C.;A. K. North;A. B. Wedel;S. Kustu https://doi.org/10.1101/gad.7.11.2258
  17. J. Bacteriol. v.160 Molecular cloning and genetic organization of C₄-dicarboxylate transport genes from Rhizobium leguminosarum Ronson, C. W.;P. M. Astwood;J. A. Downie
  18. Proc. Natl. Acad. Sci. USA. v.86 In vitro activity of the nitrogen fixation regulatory protein NIFA Santero, E.;T. Hoover;J. Keener;S. Kustu https://doi.org/10.1073/pnas.86.19.7346
  19. J. Biol. Chem. v.271 Cooperative binding of DctD to the dctA upstream activation sequence of Rhizobium meliloti is enhanced in a constitutively active truncated mutant Scholl, D.;B. T. Nixon https://doi.org/10.1074/jbc.271.42.26435
  20. Gene v.238 A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti Sojda, J. 3rd;B. Gu;J. Lee;T. R. Hoover;B. T. Nixon https://doi.org/10.1016/S0378-1119(99)00366-2
  21. Science v.248 A bacterial enhancer functions to tether a transcriptional activator near a promoter Wedel, A.;D. S. Weiss;D. Popham;P. Droge;S. Kustu https://doi.org/10.1126/science.1970441
  22. Mol. Microbiol. v.3 Analysis of C₄-dicarboxylate transport genes in Rhizobium meliloti Yarosh, O. K.;T. C. Charles;T. M. Finan https://doi.org/10.1111/j.1365-2958.1989.tb00230.x