High Production of L-Threonine using Controlled Feeding of L-Methionine and Phosphate by Escherichia coli Mutant

L-Methionine과 Phosphate의 제한 공급에 의한 Escherichia coli MT201로부터의 고농도 L-Threonine 생산

  • 이만효 (한국생명공학연구원 산업화지원실) ;
  • 이홍원 (한국생명공학연구원 산업화지원) ;
  • 김병진 (경남대학교 식품생명공학) ;
  • 김천석 (한국생명공학연구원 산업화지원) ;
  • 정준기 (한국생명공학연구원 산업화지원) ;
  • 황용일 (경남대학교 식품생명공학부)
  • Published : 2004.06.01

Abstract

L-Threonine fermentation process was constructed on batch and fed-batch culture by using Escherichia coli MT201. The production type of L-threonine was observed as growth-associated production in batch culture. In fed-batch culture studying optimal concentration of yeast extract in feeding media, when 600 g/l of glucose and 60 g/l of yeast extract were added in feeding media, 87 g/$\ell$ of L-threonine was produced. To improve cell growth and L-threonine production, the culture of high cell density was performed in fed-batch culture with oxygen enriched air and feeding media containing L-methionine and phosphate. Under the conditions, we could achieve the highest L-threonine production of98 g/$\ell$ at 60 h. The highest productivity of L-threonine was about 3.85 g/$\ell$/h.

븐 연구에서는 E. coli MT201을 이용한 L-threonine 발효공정을 확립하였다. 회분식 배양에서 L-threonine생산이 균체 증식과 더불어 증가하는 증식과 연관된 형태의 생산 곡선을 보여주었다. L-Threonine 생산에 대한 조건을 확립하기 위한 유가식 배양에서 첨가배지내 최적 효모추출물과 포도당의 농도는 각각 60 g/$\ell$와 600 g/$\ell$이였으며, 약 87 g/$\ell$의 L-threonine이 생산되었다. 유가식 배양에서도 L-threonine 생산은 회분식 배양과 마찬가지로 균체량의 증가와 더불어 L-threonine 생산이 증가하는 증식과 연관된 형태를 보여주었다. 이러한 결과를 바탕으로 적절한 균체량의 증가와 L-threonine 생산성 향상을 위하여 L-methionine과 인산염이 추가로 공급된 첨가배지를 이용한 고농도 배양 조건이 확립되었다. 한편 고농도 배양에 따른 용존산소의 결핍을 해결하기 위하여 산소가 포함된 혼합공기를 사용하였다. 최적화된 유가식 배양 결과 균체 증식도 원활하게 증가하였으며, L-threonine의 생산도 약 98 g/$\ell$로 향상되었다. 이때 L-threonine의 생산성은 약 3.85 g/$\ell$/h이었다.

Keywords

References

  1. Appl. Microbiol. Biotechnol. v.29 L-Threonine production by L-aspartate- and L-homoserine-resistant mutant of Escherichia coli Furukawa, S.;A. Ozaki;T. Nakanishi
  2. Appl. Microbiol. Biotechnol. v.29 Breeding of L-threonine hyper-producer of Escherichia coli W. Furukawa, S.;A. Ozaki;Y. Kotani;T. Nakanishi
  3. J. Biotechnol. v.104 Industrial production of amino acids by coryneform bacteria Hermann, T. https://doi.org/10.1016/S0168-1656(03)00149-4
  4. Biosci. Biotech. Biochem. v.58 Factors improving L-threonine production by a three L-threonine biosynthetic genesamplified recombinant strain of Brevibacterium lactofermentum Ishida M.;H. Kawashima;K. Sato;K. Hashiguchi;H. Ito;H. Enei;S. Nakamori https://doi.org/10.1271/bbb.58.768
  5. Agric. Biol. Chem. v.36 Production of L-threonine by analog-resistant mutants Kase, H.;K. Nakayama https://doi.org/10.1271/bbb1961.36.1611
  6. Appl. Environ. Microbiol. v.45 Transductional construction of a threonine-hyperproducing strain of Serratin marcescens: Lack of feedback controls of three aspartokinases and two homoserine dehydrogenases Komatsubara, S.;M. Kisumi;I. Chibata
  7. Kor. J. Appl. Microbiol. Biotechnol. v.19 Production of L-threonine by auxotrophs and analogue resistant mutants of Escherichia coli Lee, J. H.;J. W. Oh;H. H. Lee;H. H. Hyun
  8. J. Microbiol. Biotechnol. v.2 Construction of L-threonine overproducing Escherichia coli by cloning of the threonine operon Lee, J. H.;J. W. Oh;K. S. Noh;H. H. Lee;J. H. Lee
  9. Appl. Biochem. Biotechnol. v.37 Improvement of nitrogen supply for L-threonine production by a recombinant strain of Serratia marcescens Masuda, M.;S. Takamatsu;N. Nishimura;S. Komatsubara;T. Tosa https://doi.org/10.1007/BF02788877
  10. Agric. Biol. Chem. v.48 Stability of recombinant carrying the threonine operon in Escherichia coli Miwa, K.;S. Nakamori;K. Sano;H. Momose https://doi.org/10.1271/bbb1961.48.2233
  11. Agric. Biol. Chem. v.47 Construction of L-threonine overproducing strains of Escherichia coli K-12 using recombinant DNA techniques Miwa, K.;T. Tsuchida;O. Kurahashi;S. Nakamori;K. Sano;H. Momose https://doi.org/10.1271/bbb1961.47.2329
  12. Agric. Biol. Chem. v.51 Pyruvate formation and sugar metabolism in an amino acid-producing bacterium, Brevibacterium flavum Mori, M.;I. Shiio https://doi.org/10.1271/bbb1961.51.129
  13. J. Biosci. Bioeng. v.89 Development of an industrially stable process for L-threonine fermentation by an L-methionine-auxotrophic mutant of Escherichia coli Okamoto, K.;M. Ikeda https://doi.org/10.1016/S1389-1723(00)88057-3
  14. Biosci. Biotech. Biochem. v.61 Hyperproduction of L-threonine by an Escherichia coli mutant with imparied L-threonine uptake Okamoto, K.;K. Kino;M. Ikeda https://doi.org/10.1271/bbb.61.1877
  15. Appl. Environ. Microbiol. v.58 Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline Ramos, C.;I. L. Calderon
  16. Food Biotechnol. v.6 Complete fractionation of Saccharomyces cerevisiae Biomass Roman, K.;S. Ernest;S. Jan https://doi.org/10.1080/08905439209549836
  17. Agr. Biol. Chem. v.33 Microbial production of L-threonine. Part Ⅰ. Production by Escherichia coli mutant resistant to α-amino-β-hydroxyvaleric acid Shiio, I.;S. Nakamori https://doi.org/10.1271/bbb1961.33.1152
  18. Biosci. Biotech. Biochem. v.59 Culture conditions for inprovement of L-threonine production using a genetically self-cloned L-threonine hyperproducing strain of Escherichia coli K-12 Shimizu, E.;T. Oosumi;H. Heima;T. Tanaka;J. Kurashige;H. Enei;K. Miwa;S. Nakamori https://doi.org/10.1271/bbb.59.1095
  19. Appl. Microbiol. Biotechnol. v.54 Characterization of salt-tolerant metant for enhancement of L-threonine production in Escherichia coli Song, K. H.;H. H. Lee;H. H. Hyun https://doi.org/10.1007/s002530000417