References
- Adv. Carbohydr. Chem. v.14 Structural chemistry of the hemicellulose Aspinall,G.O. https://doi.org/10.1016/S0096-5332(08)60228-3
- Trends Biotechnol. v.3 Microbial xylanolytic systems Biely,P. https://doi.org/10.1016/0167-7799(85)90004-6
- Carbohydr. Res. v.101 The degradation of isolated hemicellulose and lignin-hemicellulose complexes by cell-free rumen hemicellulase Brice,R.E.;L.H.Morrison https://doi.org/10.1016/S0008-6215(00)80797-1
- J. Microbiol. Biotechnol. v.5 Nucleotide sequence analysis of an endo-xylanase gene (xynA) from Bacillus stearothermophilus Cho,S.G.;Y.J.Choi
- J. Biol. Chem. v.277 Detailed kinetic analysis and identification of the nucleophile in α-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase Dalia,S.;V.Belakhov;D.Solmon;G.Shoham;T.Baasov https://doi.org/10.1074/jbc.M208285200
- ACS Symp. Ser. v.399 Biodegradation of the hetero-1,4-linked xylans Dekker,R.F.H. https://doi.org/10.1021/bk-1989-0399.ch045
- J. Microbiol. Biotechnol. v.11 Carbon catabolite repression of expression of the xylanase α gene of Bacillus stearothermophilus No. 236 Ha,G.S.;I.D.Choi;Y.J.Choi
- Adv. Carbohydr. Chem. Biochem. v.42 L-arabinosidases Kaji,A.
- Appl. Environ. Microbiol. v.64 Purification and substrate specificities of two α-L-arabinofuranosidase from Aspergillus awamori IFO 4033 Kaneko,S.;M.Arimoto;M.Ohba;H.Kobayashi;T.Ishii;I.Kusakabe
- Kor. J. Appl. Microbiol. Bioeng. v.25 Nucleotide sequence of the est-gene coding for Bacillus stearothermophilus acetyxylan esterase Lee,J.S.;T.J.Choi
- J. Biol. Chem. v.193 Protein measurement with folin phenol reagent Lowry,O.H.;N.J.Rasebrough;A.L.Farr;R.J.Randall
- Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller,G.L. https://doi.org/10.1021/ac60147a030
- Kor. J. Appl. Microbiol. Bioeng. v.20 Purification and characterization of exo-xylanase from Escherichia coli cells harboring the recombinant plasmid pMG1 Mun,A.R.;Y.J.Choi
- J. Biol. Chem. v.240 The release of enzymes from E. coli by osmotic shock and during the formation of spheroplasts Neu,H.C.;L.A.Heppel
- Kor. J. Appl. Microbiol. Bioeng. v.20 Molecular cloning and expression of Bacillus stearothermophilus β-D-xyosidase grne in E. coli Oh,S.W.;S.S.Park;Y.I.Park;Y.J.Choi
- Kor. J. Appl. Microbiol. Bioeng. v.17 Production of xylanase by Bacillus stearothermophilus Song,H.S.;Y.J.Choi
- J. Microbiol. Biotechnol. v.5 Synergism among endo-xylanase, β-xylosidase, and acetyl xylan esterase from Bacillus stearothermophilus Suh,J.H.;Y.J.Choi
- Crit. Rev. Biochem. v.17 Xylanolytic enzymes from fungi and bacteria Sunna,A.;G.Antranikian
- Wood Sci. Technol. v.1 Recent progress in the chemistry of wood hemicellulose Timell,T.E. https://doi.org/10.1007/BF00592255
- Biochem. J. v.290 The xylan-degrading enzyme system of Talasomyces emersonii: Novel enzyme with activity against aryl β-D-xylosides and unsubstituted xylans Tuohy,M.G.;J.Puls;M.Claeyssens;M.Vrsanskas;M.P.Coughlan https://doi.org/10.1042/bj2900515
- The Carbohydrates v.2a Hemicellulose Whistler,R.L.;E.L.Richards
- Chemtech v.13 Hemicellulose Wilkie,K.C.B.
- Microbiol. Rev. v.52 Multiplicity of β-1,4-xylanase in microorganism: Functions and applications Wong,K.K.T.;L.U.L.Tan;J.N.Saddler
- FEMS Microbiol. Lett. v.164 Nucleotide sequence of arfB of Clostridium stercorarium, and prediction of catalytic residues of alpha arabinofuranosidases based on local similarity with several families of glycosyl hydrolases Zverlov,V.V.;W.Liebl;M.Bachleitner;W.H.Schwarz