Chaotic and Instability Effects in Brillouin-Active Fiber-Ring Sensor

광섬유링센서에서 유도되는 브루앤파의 혼돈 및 비안정화 현상

  • Published : 2004.06.01

Abstract

In this paper the effect of chaos induced instability in Brillouin-active fiber-ring sensor is described. The inherent optical feedback by the backscattered Stokes wave in optical fiber leads to instabilities in the form of optical chaos. The paradigm of optical chaos in fiber serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in communication and sensing. At weak power, the nature of the Brillouin instability can occur at before threshold. At strong power, the temporal evolution above threshold is periodic and at higher intensity can become chaotic. The threshold for the Brillouin instability in fiber-ring sensor is much lower than the threshold of the normal Brillouin instability process.

Keywords

References

  1. Gregory D. Vanwiggeren and R. Roy, 'Communication with Chaotic Lasers', SCIENCE, vol. 279, pp. 1198-1200, 1998 https://doi.org/10.1126/science.279.5354.1198
  2. T. Tanemura, Y. Takyshima, and K. Kikuchi, 'Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber', Optics Letters, vol. 27, No.17, pp. 1552-1554, 2002 https://doi.org/10.1364/OL.27.001552
  3. K. Hotate, and Sean S. L. Ong, 'Distributed Dynamic Strain Measurement Using a Correlation-Based Brillouin Sensing System', IEEE Photonics Letters, vol. 15, No. 2, pp. 272-274, 2003 https://doi.org/10.1109/LPT.2002.806107
  4. C. C. Lee and S. Chi, 'Measurement of Stimulated-Brillouin- Scattering Threshold Various Types of Fibers Using Brillouin Optical-Time-Domain Reflectometer', IEEE Photonics Letters, vol. 12, No. 6, pp. 672-674, 2000 https://doi.org/10.1109/68.849080
  5. V. Lecoeuche, D. J. Webb, C. N. Pannel, and D. A. Jackson, '25Km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain', Opt. Comm. vol. 168, pp. 95-102, 1999 https://doi.org/10.1016/S0030-4018(99)00358-2
  6. M. Nikles, L. Thevenaz, and P. A. Robert, 'Simple distributed sensor based on Brillouin gain spectrum analysis', Optics Letters, vol. 21, No. 12, pp. 758-760, 1996 https://doi.org/10.1364/OL.21.000758
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd, Academic press, London, 2001
  8. D. Cotter, 'Stimulated Brillouin scattering in Monomode Optical Fiber', J. Opt. Commun. 4, pp. 10-19, 1983
  9. C. Yu, 'Review of Brillouin Active Fiber Base Acoustooptic Sensors' SPIE. Vol. 4920, PP. 73 80, October 2002 https://doi.org/10.1117/12.482028
  10. S. Le Floch and P.C ambob, 'Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equation in standard single-mode optical fibers', J. Opt. Soc. Am. A, vol. 20, No. 6, pp. 1132-1137, 2003 https://doi.org/10.1364/JOSAA.20.001132
  11. Hongpu Li and K. Ogusu, 'Dynamic Behavior of Stimulated Brillouin Scattering in a Single-Mode Optical Fiber', Jpn. J. Appl. Phys. Vol. 38, pp. 6309-6315, 1999 https://doi.org/10.1143/JJAP.38.6309
  12. R. G. Harrison, D. Yu, W. Lu, P. M. Ripley, 'Chaotic stimulated Brillouin scattering: theory and experiment', Physica D.86, pp. 182-188, 1995 https://doi.org/10.1016/0167-2789(95)00099-P
  13. V. Lecoeuche, B. Segard, and J. Zemmouri, 'On route to chaos in stimulated Brillouin scattering with feedback', Opt. Comm. vol. 172, pp. 335-345, 1999 https://doi.org/10.1016/S0030-4018(99)00553-2
  14. D. Yu, W. Lu, and R. G. Harrison, 'Physical origin of dynamical stimulated Brillouin scattering in optical fibers with feedback', Physical Review A, vol. 51, No. 1, pp. 669-674, 1995 https://doi.org/10.1103/PhysRevA.51.669