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BOUNDS OF CORRELATION DIMENSIONS
FOR SNAPSHOT ATTRACTORS

SunGg KAG CHANG, M1 RyEoNG LEE AND HUNG HWAN LEE

ABSTRACT. In this paper, we reformulate a snapshot attractor([5]),
(K, ji;) generated by a random baker’s map with a sequence of prob-
ability measures {fi;} on K. We obtain bounds of the correlation
dimensions of (K, fi;) for all [ > 1.

1. Introduction

Ledrappier and Young [4] have theoretically studied about the dy-
namics generated by random maps. And they proved that, with prob-
ability one, a given realization of the random process turns out to be a
sequence of patterns each having an information dimension given by the
Kaplan-Yorke formula ([6]) in the two dimensional cases.

In fluid mechanics, to explain the particle motion on the surface of a
temporally irregular fluid, many authors have experimentally dealt with
strange attractors induced by random maps ([9]). In [5], they considered
a model random map given in the section 2, the given model illustrate
the evolution of the pattern of scum floating on a fluid surface. And
they considered a finite number of realizations of a random sequence and
experimentally defined snapshot attractors. Also they obtained bounds
of information dimensions of the snapshot attractors by the numerical
calculations.

On the other hand, it was emphasized by Grossberger, Hentschel
and Procaccia that the correlation dimension is particularly suitable
because of the relatively easy experimental computation ([2], [3], [6]). It
is well-known that the correlation dimension is less than or equal to the
information dimension with respect to any probability measure ([7], [8]).
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In this paper, in order to obtain the theoretical results about at-
tractors induced by random maps, we modify a model random map to a
solvable random map and reformulate the snapshot attractors generated
by a random baker’s map in connection with each random sequence in
(0,1). For each snapshot attractor, we have a lower bound and an up-
per bound for the correlation dimension via calculations of energy (see
Theorem 3.3). Also, we show that the Kaplan-Yorke dimension, the in-
formation dimension and the correlation dimension have the same value
with respect to the natural measure (]3], [6]) (see Remark 3.6).

2. Preliminaries

Let us introduce a model random map [5] given by

{ Tpt1 =2Zn+ (1 —e “yp/a (mod 27)

Yn+1 = KSIN(Tnq1 + ) + € %Yn

1)

where ¢, is chosen randomly in [0,27] at each iteration and x and «
fixed positive constants.

To obtain the theories about the random map(1), we consider a solv-
able random baker’s map M on the set X = [0, 1] x [0, 1] in R? defined
as follows : for n=1,2,3,..., (Tp41,Yn+1) = M{(Zn,yn) such that

ATy, (if yn < cp)
Tt = 1 - g+ Ao (if yn > cn)

and
Yoo (i yn < cn)
Cn
Yn+1 = —c
yln_ cnn (if yn > cp)

where 0 < A, A2 and A1 + A2 < 1, and ¢, € (0,1) is chosen randomly
at each iteration. Then at the first iteration, X is split into the left
strip(= X1) with the width A; and the right strip (= X2) with the width
A2. At the second iteration, X;(i = 1,2) is split into the left substrip
(= X;1) of X; with the width A; - A; and the right substrip (= X;2)
of X; with the width A; - A2. Continuing this way, we can obtain after
n-th iteration 2" strips Xj, i,,.. s, Which have the width A;; - Ay -+ A
for i; € {1,2} ( =1,2,...,n). Denote

{1,2}m = {(Z'I’Z.27 o 7zm) : Z] € {132}) .7 = 1’ am}

in
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Set
o0
K=() U Xiyigo i
n=1 (il,i2,-~~ ,’in)e{l,Q}"
We call K the random baker’s set generated by the random baker’s map
M.

Now we are in a position to define a probability measure on K. For
any n > 1 and all (¢1,42,-- ,4,), we define a map p as follows:

P(Xis iz, sin) szj =Diy " Piy " Py,

where p;, = c ifig =1land p;, =1—cpifip=2fork=1,2,...,n. For
any Borel subset A of K, let

ﬂp(A) = inf Z p(Xi1,~~-,in) A C U Xil,"',in }

(f1,4in)€ C (i1, ,in)€ CC{1,2}"
Then ji, is a probability measure on K.
We denote E = proj(E) for E C R?, where proj(z,y) = z for all

(z,y) € R? Let u, be the induced measure on K, i.e. up(E) fip(E)
for any Borel subset E of K. Put
S = {1,2}N = {(ir,i2,43,---) : 45 €{1,2},5=1,2,... }.
Then ¥ is a compact set with the metric p given by p(i,j) = 27%,
where k = min{n : i, # j, for n > 1} for i = (i1,42,---) and j =
(J1,J2,73,---) € 2. Let o : 3 — g be the shift map defined by
o(i1,i2,13, -+) = (ig,i3,---). Write 0/ = cogi L forall j > 1. We
define a bljectlve map I from K to X5 as II(z) = (i1,42,---) € Xg for
any = N5 X“,Q, in € K. Let vp be the probability measure on g
satisfying I/p = pp o II7". Then the measure v, is a o-invariant measure
on Xj. For the randomly chosen number ¢; € (0, 1), define a continuous
function ¢ : Lo — R as ¢ (i1, 42,13, -+ ) = logp;,, where p;, = c; if4; = 1
and p;, =1—¢ if iy = 2.
In the special case, p;, = c1(in = 1) and p;, = 1 — ¢1(in = 2) for all
n > 1, it is well-known that the o-invariant measure vp on X becomes
an ergodic measure ([1], [6]). However, in general case, we do not know
whether the o-invariant measure v, becomes an ergodic measure on X5.

PROPOSITION 2.1. Let K, £, i, and v, and ¢ be defined as above.
If v, is an ergodic measure on 3, then

1 .
. log (X1 iy, i) — c1loger + (1 —c1) log(l —¢;) as n — oo
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for l/p-almost alli= (’il, 19,13, ) € Y.

Proof. Note that the measure v, is o-invariant and an ergodic mea-
sure on X, and the function ¢ € L!(u,). We obtain, using the ergodic
Theorem ( [1] [6]), for v,-almost all i = (i1,1a,- ) € Yo,

X 1.
- 10% Hp(Xin g, in) = — 108 p(Xin g, i)

1 n
= - log H pij

n e

1 n 1 n—1 '
=~ logpi, =~ (o’ (1))

j=1 §=0
1

- —— dv

VP(Z2) 2 ¢ P

=ciloge; + (1 —c1)log(l —c1).
O

For each fixed | € N, denote {c},}(n = 1,2,3,...) a random sequence
in (0,1). Then we obtain a probability measure fi,) on K such that for
any n > 1 and all (41,42, ...,%n),

Bty (Xiy sig, o i) sz] Diy *Dig** Pin

where p;, = ci for ig, =1land p;, = 1— ci for 75 = 2. Write f; for
Hp(y being the generated measure from each random sequence { cﬁl 1,
n (0,1), for each [ € N. We call (K, fi;) a snapshot attractor for each
1=1,2,3,..

Denote py for p,() being the induced probability measure on K from
By for each [ > 1. From Proposition 2.1, we have the following.

PROPOSITION 2.2. For each ! € N, let K, 3o, 1y, v; and ¢ be defined
as above. If v is an ergodic measure on 33, then

1 N
" 10g i (Xiy igor in) — i logch 4+ (1 —ci)log(l —ct) asn — oo
for yj-almost all i = (i1,12,13,- - ) € Za.

REMARK 2.3. f(z) =zlogz+(1— )log(l x) is a concave upward
function on (0,1) and the expectation of f(z) is fo z)dr = —3
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3. Main results

We denote |A| for the diameter of a set A in R%.
LEMMA 3.1. If E C K satisfies

<11m1nf g,up(A i1,i2, ,ln)
nee log |Xi1,'i2,~" 7in,

for any N2, X;, 5, i.(= x) € E, then for some constant a; > 0, we
have py(B(z,7) N E) < a;r®», where B(z,r) is the closed ball of radius
r with center x.

Proof. Let r > 0 be given. For each z € E, there exists a unique
sequence (i1, 12,13, --) satisfying N2 1X“712’ = z. We can find a

large number n € N satisfying = € X“,z?, - and

17'n+l
(2) X iz i) S 7 < 1Koy -
For y(;é x) € B(z,r) N E, there exists a unique (j1, jo2, 3, - - ) such that
N3 IXJMQ, i = ¥, and we also can find k € N such that |Xj, . k]
r<|Xjgland y € Xj e I X r]X]h = ¢, then
B(z,r) meets at most two sets X, ... 4., and X]1 g Otherwise,
(B(z,r)NE) C X;, ... ;, or (B(z,7)NE) C le .- Using the hypoth-
esis, we get for large number [,
(3) Up(Xil,i2,~-~,iz) < IXil,im“',itlap'
If we take r sufficiently small, then the numbers n and k& become to
satisfy (2) and (3). Put Ag = min{\;, A2}. Hence for all € FE, using
the facts (2) and (3),

/I'P(B(x’r) m E) < IU’P( Xil,iZ 7in ) +/‘Lp( le:j?y"'ujk )

< l X11,12, “yin |ap +| Xj1,j2,'",jk ’ap

<22, r® = agr®

“Jk+1

LEMMA 3.2. If E C K satisfies

Jimn sup 108 pp(Xiy g, i)
n—oo  log lXi1,i2,'“ ,inl

<bp

for any ﬂ;’,"leﬁ,iQ,...,in(z x) € E, then for all x € E and r > 0, we have
pp(B(z,7) N E) > aarP, where some constant ag > 0.
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Proof. Let » > 0 be given. For each z = ﬂ;’;’:lXil,iz,.‘.’in e FE,
there exists a large number ng € N such that z € Xj, ... 4, ,, and
|X1'1,i2,--',in0+1| <r< lXil,iz,"

a large number Ny € N such that for all n > Np, pp(Xs, 6, in) =

By the hypothesis, there exists

: 7in0 |’
| X145, in|P7. For a sufficiently small number 0 < r < 1, we may as-
sume that ng > Ny. Therefore, for all x = M52, Xy, 5, 4, € E, we have
B(z,r) D X\ ip,

. 7in0+ 1 a'nd

pp(B(@,7) N E) 2 pap(Xiy g, ,in0+1)
Z IXilai27“' ain0+1 |Bp
> lel,iz,“-,inoﬂlﬁp -’I’ﬁ”
IXil,iz," |ﬁp
> M\ ple = gy 1P,

. ’1’”0

O

We recall the following definition of the correlation dimension of A(C
R¢) with respect to a probability measure n on A([8]) ;

Dy(A,n) =sup{s > 0: I;(n) < oo} =inf{s > 0: I4(n) = oo},
where I;(n) = [, [, |z—y|~*dn(x)dn(y) is the s-energy of A with respect
to 7.

THEOREM 3.3. If E C K satisfies

(4) ap <liminf Og'up(A 1,427 in) < limsup ogup(A iz in) < Bp
n—eo log |Xi1,i2,-" ,inl n—oo  log |Xi1,i2,-" ,inl

~

for any N2y Xy, iy 4, € E, then we have o, < Do(E, pip) < Bp.

Proof. (i): In order to obtain the lower bound of the correlation di-
mension of F, we calculate the energy I;(u,) on E with respect to the
measure pp,. We put ¢(z) = [ |z — y| *du,(y). Using the Lemma 3.1,
we have,

dr(x) = /Ooo pp({y € E: |z —y|™" > r})dr
- / ~ 1 (B(z,r~ V) 0 E)dr
0

= t/ et p,(B(z,€) N E)de
0
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1 00
<t[/o e tuy(B(z,€) N E)de + /1 e’t_l,up(E)de]
1
< alt/ er 1 de 4 pp(E) < o0,
0

for all 0 < ¢ < ay. Hence Ii(pp) = [z ¢¢(x) dup(x) < oo for all £ < oy,
which implies Do(E, pp) > ap.

(ii): In order to obtain the upper bound, we analogously calculate
¢¢(x) as follows. Using Lemma 3.2, for all t > G,

xR0
di(z) = t/ el pp(B(z,€))de
0
> t/ et gy Prde = 0
0

Therefore I(p,) = [5 ¢i(x) dup(x) = oo for all t > B, which implies
D2(EHU’P) S/Bp ]
COROLLARY 3.4. For each fi;, if E C K satisfies (4), then we have
1+ apqy < Do By i) < 14 By

Let ¢; € (0,1) be fixed and let py =c1 and pp =1 —c1. Let p;,, = p1
if i, =1 and p;, = pe ifi, =2 foralln =1,2,3,.... We consider the
Borel subset K (p;,p2) of K :

K(p17p2)

E{H(i)ef( #ljiij=k 1<j<n}

n

— pr(n — 0),k = 1,2}.

Then the probability measure u(,, ) on K(p1,p2) satisfies that for any
Moz1 Xy iz, in € K(P1,D2),

H(pr p2) (K iz, in) H pi; =

COROLLARY 3.5. Let [i(, p,) be the induced probability measure by
(p1,ps) ON & subset K (p1,pe) of K, for a given (p1,pz). Then, we have

p1logpr + p2logpa
p1log A1 + p2log Ay

DZ(K(p17p2), ,D’(pl,pz)) =
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Proof. By the definition of K(p1,p2), we have | X;, ... ;.| = A - Ap™™
for all N, X;, 4, i, € K(p1,p2). Then

~

llm log ‘u(phPQ)(Xily“' »in) — hm mlogpl + (n - m) 10gp2
n=o log | X, il n—co mlog A1 + (n — m)log Ay

_ plogpy +palogpy _

" prlog A +paloghg r
Since fi(p, p,) (K (p1,p2)) = 1, we get Da(K(p1,p2), fiprpy)) = 1+7. O

REMARK 3.6. For the set K(p1,p2) with natural measures p; and
p2, it is known that the Kaplan-Yorke formula(= Dgy) in the two-
dimensional cases is the same as the information dimension(= D) ([4],
[6]). And we note that D; is the same as the correlation dimension
because of self-similarity ([3], [6]). Therefore we have

Dy(K(p1,p2), B(py py)) = 1 +7v = D1 = Dgy.

If each probability p; is related with the contraction ratio ); (i = 1, 2),
then we have the following result.

COROLLARY 3.7. Let s be the number satisfying A\] + Aj = 1 and let
pi = A; (i =1,2). Then D2(K (p1,D2), Bp,py)) = 1 + 5.

Proof. In Corollary 3.5, substituting A] for p; (¢ = 1,2), we get this
Corollary. O

4. Example

In the following example, we introduce a simple random baker’s map
on R! with a probability sequence.

EXAMPLE 4.1. Let Mi(z) = %z and Ms(z) = 2%(8% + 19) for all
z € [0,1]. Set Kj,..;, = (M;, o--- 0 M;,)([0,1]) for each ¢; € {1,2}
(1=12,..,n). Put K =nN%, Uiy, in)el1,2)n Kiy,oo i Fix each 1 € N,
let {c}, : » = 1,2,..} be a random sequence in (0,1), i.e. cz- is the
probability of contractive map M;; for each ¢; € {1,2} and j =1,2,....
Define a probability measure p,q) on K such that for each I > 1 and
all n > 1, ppy(Kiy, in) = PirPip - Pin Where p;, = ck(ix = 1) and
pi, =1 —ck(ip =2).

(a) For the set K (p1,p2) where p; + p2 = 1, we have
p1logpr + palogpe
3(p1log § +p2log3)’

DZ(K(phPZ)) l’l‘(pl,pz)) =
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(b) In particular, if we take p; = (—21—7)3 and po = (%)s where s is the
. . 1\S 8\S _ 12 —
numll)er satisfying () +(Z)" = 1, then we have Dy(K(3, ), L2 )

s = 3-

Proof. By Corollary 3.5 and 3.7, we can obtain (a) and (b). O
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