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GENERAL VARIATIONAL INCLUSIONS
AND GENERAL RESOLVENT EQUATIONS

ZEQING L1u, JEONG SHEOK UME AND SHIN MIN KANG

ABSTRACT. In this paper, we introduce and study a new class of
variational inclusions, called the general variational inclusion. We
prove the equivalence between the general variational inclusions,
the general resolvent equations, and the fixed-point problems, us-
ing the resolvent operator technique. This equivalence is used to
suggest and analyze a few iterative algorithms for solving the gen-
eral variational inclusions and the general resolvent equations. Un-
der certain conditions, the convergence analyses are also studied.
The results presented in this paper generalize, improve and unify a
number of recent results.

1. Introduction

The variational inequality theory provides us a unified frame work for
dealing with a wide class of problems arising in elasticity, oceanography,
economics, transportation, operations research, structural analysis, and
engineering science, etc. (see [1], [2], [4]-[10] and the references therein).
One of the most interesting and important problems in the variational
inequality theory is the development of an efficient and implementable
iterative algorithm. In recent years, variational inequalities have been
extended and generalized in different directions using novel and innova-
tive techniques both for its own sake and for its applications. A useful
and important generalization of variational inequalities is a variational
inclusion.

Using the projection technique, Verma [9], [10] established the solv-
ability of the generalized variational inequalities involving the relaxed
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Lipschitz and relaxed monotone operators in a Hilbert space setting.
Noor [6], Noor-Noor [7], Noor-Noor-Rassias [8] introduced and studied
some new classes of variational inclusions for set-valued mappings with
compact valued in Hilbert spaces.

Inspired and motivated by the results in {6]-[10], in this paper, we
introduce and study a new class of variational inclusions, which is called
the general variational inclusion. Using essentially the general resolvent
operator technique, we establish the equivalence between the general
variational inclusions, the resolvent equations, and the fixed-point prob-
lems. This equivalence is used to suggest and analyze a few iterative
algorithms for solving the general variational inclusions and the general
resolvent equations. Under certain conditions, the convergence analyses
are also studied. The results presented in this paper generalize, improve
and unify a number of recent results due to Hassouni-Moudafi [2], Noor
[3]-[6], Noor-Noor (7], Noor-Noor-Rassias [8] and Verma [9], [10].

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space en-
dowed with the norm || - | and inner product (-,-), respectively, and I
denotes the identity mapping on H. Let 2¥ and CB(H) stand for the
families of all nonempty subsets and all nonempty closed bounded sub-
sets of H, respectively. Let A, B,C : H — 2 be multivalued mappings,
g: H — H be amapping and N : H x H x H — H be a nonlinear map-
ping. Suppose that M : H — 2 is a maximal monotone mapping with
g(H) Ndom(M) # Q. For each given f € H, we consider the following
problem:

Find u € H, z € Au, y € Bu, z € Cu such that gu € dom(M) and

(2.1) f € N(z,y,2) + M(gu).

Problem (2.1) is called the general variational inclusion.

Now we consider some special cases of problem (2.1):

(a) If f =0 and N(z,y,2) = N(z,y) for all (z,y,z) € Hx H x H,
where N : H x H — H is a nonlinear mapping, then problem (2.1) is
equivalent to finding u € H, x € Au, y € Bu such that gu € dom(M)
and

(2.2) 0 € N(z,y) + M(gu).



General variational inclusions and general resolvent equations 243

This problem is called the general set-valued variational inclusion, a
problem introduced and studied by Noor [6], using the resolvent equation
technique.

(b) If M = Oy, where ¢ : H — R|J{+o0} is a proper convex lower
semicontinuous function on H and g(H) () dom(d¢) # 0 and ¢ denotes
the subdifferential of function ¢, then problem (2.1) is equivalent to
finding u € H, z € Au, y € Bu and z € Cu such that gu € dom(dyp)
and

(2.3) (N(z,y,2) — f,v—gu) > p(gu) — p(v), forall ve H.

This problem seems to be a new one.

(c) If N(z,y,2) = N(z,y) for all (z,y,2) € Hx Hx H and f =0,
then problem (2.3) collapses to finding u € H, x € Au, y € Bu such
that gu € dom(9¢) and

(2.4) (N(z,y),v — gu) > p(gu) — p(v), forall ve H.

Problem (2.4) is called the generalized set-valued variational inequality,
a problem introduced and studied by Noor-Noor-Rassias [8], using the
resolvent equation technique.

(d) If N(z,y,2) = gz — N(y,2) for all (z,y,2) € H x H x H and
f =0, then problem (2.3) collapses to finding u € H, z € Au, y € Bu
such that gu € dom(9¢p) and

(2.5) (gu — N(z,y),v — gu) > ¢(gu) — p(v), forall ve H.

Problem (2.5) is called the multivalued mixed variational inequality, a
problem introduced and studied by Noor-Noor [7].

(e) f N(z,y,2) = Ax — By for all (z,y,2) € H x H x H and f =0,
where A, B : H — H are single-valued mappings, then problem (2.3) is
equivalent to finding u € H such that gu € dom(dyp) and

(2.6) (Au — Bu,v — gu) > ¢o{(gu) — ¢(v), forall ve H,

a problem introduced and studied by Hassouni-Moudafi [2].

(f) If N(z,y,2) =gz — (y — 2) for all (z,y,2) e HXxHxH, f =0
and the function ¢ is the indicator function of a closed convex set K in
H, that is,

0, ifue kK,

+00, otherwise,

o(w) = I = {
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then problem (2.3) is equivalent to finding u € H, z € Au, y € Bu such
that gu is in K and

(2.7) (gu—(z —y),v—gu) >0, forallve K,

a problem studied by Verma [9], using the projection method.

(g) Ifg=1, N(z,y,2z) = Az +y for all (z,y,2) € H x H x H and
f =0, where A : H — H is a single-valued mapping and ¢ is the
indicator function of a closed convex set K in H, then problem (2.3) is
equivalent to finding u € K, y € Bu such that

(2.8) (Au+y,v—u)y >0, forall vekK,

a problem studied by Verma [10], using the projection method.

DEFINITION 2.1 [1]. If M is a maximal monotone mapping from H
into 29, then for a constant p > 0, the resolvent operator associate with
M is defined by

Ju(u) = (I 4 pM) (u), foralluc H.

It is known that the resolvent operator Jys is single-valued and non-
expansive.

In relation to problem (2.1), we consider the problem of finding w,u €
H, z € Au, y € Bu, 2z € Cu such that

(29) N(x,y,z)+p_1RMw=f,

where p > 0 is a constant, Ryy = I — Jp and Jus is the resolvent
operator. The equations of the type (2.9) are called the general resolvent
equations. Moreover, if M (u) = Ik (u) is the indicator function of K, the
resolvent operator Jy; = Pk, the projection of H onto K. Consequently,
problem (2.9) is equivalent to finding w,u € H, ¢ € Au, y € Bu, z € Cu
such that

(210) N(CL‘,’y,Z) +P—1QK'LU = f)

where Qg = I — Pk and p > 0 is a constant. The equations (2.10) are
called the Wiener-Hopf equations. For the formulations and applications
of the resolvent equations and Wiener-Hopf equations, see [4]-[8].
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It is well known that there exist maximal monotone mappings, which
are not subdifferentials of lower semicontinuous proper convex functions.
For a suitable choice of the mappings g, A, B,C, N, M, the element f,
and the space H, one can obtain a number of known and new classes of
variational inequalities, variational inclusions, and related optimization
problems from the general variational inclusions (2.1). Furthermore,
these types of variational inclusions enable us to study many impor-
tant problems arising in mechanics, physics, optimization and control,
nonlinear programming, economics, finance, regional, structural, trans-
portation, elasticity, and applied sciences in a general and unified frame-
work.

DEFINITION 2.2. A multivalued mapping A : H — 2¥ is said to
be strongly monotone with respect to the first argument of N(-,-,-) :
H x H x H — H, if there exists a constant » > 0 such that

(N(z,+,") = N(y,,-),u—v) >r|lu—v|* forall z € Au,y € Av.

DEFINITION 2.3. A multivalued mapping B : H — 2 is said to
be relaxed Lipschitz with respect to the second argument of N(-,-,-) :
H x H x H— H, if there exists a constant r > 0 such that

(N(,2,") = N(y,"),u—v) < —r|lu—v|* for all z € Bu,y € Bu.
DEFINITION 2.4. A multivalued mapping C : H — 2 is said to

be relaxed monotone with respect to the third argument of N(,-,-) :
H x H x H— H, if there exists a constant r > 0 such that

(N(y )= N(y),u—v) > —r|lu—v||? forall z € Cu,y € Cw.
DEFINITION 2.5. A mapping N : H x H x H — H is said to be

Lipschitz continuous with respect to the first argument if there exists a
constant ¢ > 0 such that

IN(z,-) = N(y,-, )| <tz —y|| forallz,ye H.
In a similar way, we can define Lipschitz continuity of the mapping
N(-,-,-) with respect to the second or third argument.

DEFINITION 2.6. A multivalued mapping A : H — CB(H) is said to
be H-Lipschitz continuous if there exists a constant » > 0 such that

H(Az,Ay) <rllz —y|| forallz,y€ H,
where H(-,-) is the Hausdorff metric on CB(H).
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3. Iterative algorithms

LEMMA 3.1. Let f be a given element in H. Then the following
conditions are equivalent to each other:

(i) the general variational inclusion (2.1) has a solution u € H, x €

Au, y € Bu, z € Cu with gu € dom(M);
(ii) there exists u € H, x € Au, y € Bu, z € Cu satisfy the relation

(3.1) gu = Ju(gu+pf — pN(z,y,2)),
where p > 0 is a constant and Jys is the resolvent operator;

(iii) the general resolvent equation (2.9) has a solution w,u € H,
x € Au, y € Bu, z € Cu with

Proof. Tt is evident that the general variational inclusion (2.1) has a
solution u € H, x € Au, y € Bu, z € Cu with gu € dom(M) if and only
if

pf € pN(z,y,2) + pM(gu) = —gu + pN(z,y,2) + (I + pM)(gu),
which is equivalent to

gu = JM(gU’ + pf - pN(CC, y?z))a

whereu € H, z € Au,y € Bu, z € Cu. That is, (i) and (ii) is equivalent.
Suppose that (ii) holds. It follows from (3.1) that

Ry (gu+ pf — pN(z,9, 2))
= gu+pf — pN(z,y,2) — Jmu(gu+ pf — pN(z,y, 2))
= pf — pN(z,y, 2),

which means that
N(z,y,2) + p ' Ru(w) = f,

where w = gu + pf — pN(z,y, 2). That is, (iii) is satisfied.
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Conversely, suppose that (iii) holds. Then the general resolvent equa-
tion (2.9) has a solution w,u € H, z € Au, y € Bu, z € Cu and (3.2)
holds. Substituting (3.2) into (2.9), we infer that

f = N(x,y, Z) + p—lRM(w)
= N(=z,y,2)
+p gu+ pf — pN(z,y,2) — In(gu+ pf — pN(z,y,2))]
=p lgu+ f — p " Im(gu + pf — pN(z,y, 2)),

which yields that

(3.3) gu = Jy(gu+ pf — pN(z,y,2)) = Juw.
That is, (ii) is fulfilled. This completes the proof. 0

REMARK 3.1. Lemma 3.1 extends Lemma 2.1 in [2], Lemma 3.1 and
Theorem 3.1 in [4] and [6], Lemma 3.1 in [5], Lemma 3.1 and Theorem
5.1 in [7], Lemma 3.1 and Theorem 3.2 in [8], and Lemma 3.2 in [9] and
[10].

Now we invoke Lemma 3.1, (3.3) and Nadler’s result [3] to suggest a
number of iterative algorithms for solving the general variational inclu-
sion (2.1) and the general resolvent equation (2.9).

ALcoriTHM 3.1. Let M : H -2 g: H - H N: HxHxH — H,
A,B,C: H— CB(H). Let f be a given element in H and p > 0 be
a constant and g(H) D Jp(H). For given wy,up € H, ¢ € Auy,

Yo € BUO’ z0 € CUO’ ComPUte {wn};.zozm {Un}?f’:o’ {xn}%o=0’ {yn}%o:m
and {z,}22, by the iterative schemes

(3.4) gun = Jpyrwn,

zn — Zni1ll < A4+ (n4+ 1) Y H(AUn, Ating1), Tn € Auy,,
(35) ”yn - yn+1” < (1 + (n + 1)_1)H(Bun7 Bun—’r—l)a Yn € Bun,
”Zn - Zn+1“ < (1 + (n + 1)~1)H(Cun7cun+l)a 2n € Cuy,

(3.6) Wnt1 = (L = Nwn + Agun + pf — pN(Tn, Yn, 2n)),

for all n > 0, where X € (0, 1] is a parameter.
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ALGORITHM 3.2. Let M : H - 27 g H - H N: HxHxH — H,
A,B,C : H— CB(H). Let f be a given element in H and p > 0 be
a constant and g(H) 2 Ju(H). For given wg,ug € H, zg € Aug,

Yo € Bug, 20 € Cug, compute {wn}72o, {un}nlo, {Zn}nlo: {¥n}ato,
and {z,}52, by the iterative schemes

gun = JMwTL7

lZn — Zpsa || € A+ (n+ 1) H(Aun, Aupy1), T € Aug,
”yn —Yns1l < (1 +(n+ 1)—1)H(Bum Buny1), Yn € Bun,
l2n = 2Zng1ll € L+ (04 1)"HH(Cup, Ciny1), zn € Cun,

Wnt1 = (1= Nwn + Mgtn + f = N(Zn, Un» 22) + (1 — p7" ) Rpyrwn),
for all n > 0, where X € (0, 1] is a parameter.

ALGORITHM 3.3. Let M : H -2 g: H - H N: HxHxH — H,
A,B,C: H — CB(H). Let f be a given element in H and p > 0 be a
constant. For given ug € H, x9 € Aug, Yo € Bug, 20 € Cug, compute
{un}o o, {Zn} 0, {Un}olo, and {2,}52, by the iterative schemes

Un+1 = (1 - )\)Un + A{Un — gUun + JM(gun +pf - ,ON(xn;yna Zn))}7

lzrn — T || < A+ (n+ 1) "HYH(Aup, Aunyr), Tn € Ay,
”yn - yn+1” < (1 + (n+ 1)—1)H(BunaBun+1)7 Yn € Buna
lzn — 2zngall € 1+ (n+ 1) "HH(Cupn, Ctiny1), 2n € Cunp

for all n > 0, where \ € (0,1] is a parameter.

REMARK 3.2. Algorithm 3.1, Algorithm 3.2 and Algorithm 3.3 in-
clude a few known algorithms in [2} and [4]-[10] as special cases.

4. Existence and convergence theorems

Now we study those conditions under which the approximate solution
w,, obtained from Algorithm 3.1 converges to the exact solution w € H
of the general resolvent equation (2.9). In a similar way, one can study
the convergence analysis of Algorithms 3.2 and 3.3.
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THEOREM 4.1. Let g : H — H be strongly monotone and Lipschitz
continuous with constants o and 6, respectively, M : H — 2H be a
maximal monotone mapping with g(H) D Jy(H). Let N be Lipschitz
continuous with respect to the first, second and third arguments with
constants 3,1 and a, respectively, A, B,C : H — CB(H) be H-Lipschitz
continuous with constants u,€ and b, respectively, and A be strongly
monotone with respect to the first argument of N with constant o. Let

(4.1) k=2v1-20+62 Bu>a.
If there exists a constant p > 0 satisfying
(4.2) k+p(én+adb) <1

and one of the following conditions

Bu > né + ab, Ia — (L~ k)(n€ + ab)|
> \/k(2 k)(B2u2 — (n€ + ab)?),
(4.3) _a— (1= k)(n + ab)
TG0k + b
o Ve =T —F)(E + ab))? — k(2 — K)(FPp? — (né + ab)’).
B2u? — (n€ + ab)?

(4.4) Bu=né+ab, a>(1~k)Bu, p> o f((zl__klz) 7k
Br < n& + ab,
(1-k)(nE+ab) —a
(4.5) P (né T ab)? — 22
o VIO —F)0E +ab) — o + K 2 k)((n£ + ab)? — B2
(n€ + ab)? — B2p? ’

then for each given f € H, there exist w,u € H, x € Au, y € Bu
and z € Cu with w = gu + pf — pN(z,y, z) satisfying the general
resolvent equation (2.9) and the sequences {w, 15 o, {un}s o, {Zn}olg,
{yn 52, and {z,}:° o generated by Algorithm 3.1 converge, respectively,
to w,u,x,y and z strongly in H.
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Proof. In view of Algorithm 3.1, we obtain that

[wn41 — wnl|
= (1 = Nwn + Agun + pf = pN(Tn, Yn2n))

- (1 - /\)wn—l - )‘(gun—l + pf - pN(xn—layn—lazn—l))“
< (1= Mwn — waa|

+ AMlgun — gun—1 — p(N(Zn, Yn, 2n) — N(Tn-1,Yn-1, 2n-1))||

(4.6) < (1= Nllwn — w1l + Allun — up—1 = (gun — gun—1)||

+ Mun — tn-1 = p(N(Zn, Yn, 2n) — N(Tn-1,Yn-1,2n-1))|l
< (1= Mlwn = w1l + Mlun = up—1 — (gun — gun-1)|l

+ AMlun — un—1 — p(N(Zn, Yns 2n) — N(ZTn-1, Yn, 2n))|

+ MUN(Zr—1,Yn, 20) — N(Tn—1,Yn—1, 2n) ||

+ )‘p“N(mn—layn—la Zn) — N(zp-1,Yn-1, Zn—l)”'

Note that g is Lipschitz continuous and strongly monotone. Hence we
have
(4.7)

“’U,n —Up-1 — (gun - gun—l)

= |lun - Un—1||2 — 2(gUup — GUn—1,Un — Un—1) + ||gun — gun~1”2

<(1-20+ 52)I|un — un_1||2.

I?

Since A is H-Lipschitz continuous and strongly monotone with respect
to the first argument of N, and N is Lipschitz continuous with respect
to the first argument, we conclude that
(4.8)

“un —Up-1 — p(N(a:n, Yn, Zn) - N(wn—la Yn, zn))

= |lu, - un—1”2 —2p(N(Zn,Yn, 2n) = N(Zn=1,Yns 2n); Un — Un—1)
+ P2”N($mymzn) - N(mn—laymzn)“2

< (1= 2pa)|lun = up-1|? + p°B°|l2n — Zna]l®

< (1 =200+ B2 (1 4+ 127 lun — un—1*.

I?

Since N is Lipschitz continuous with respect to the second and third
arguments, respectively, and B and C are H-Lipschitz continuous, we
know that

(4.9) IN(Zn-1,¥n,2n) = N(@n-1,Yn-1, 2 )|l < ENL+n"")un —un—1],
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(4.10)
”N(xn—la yn——lazn) - N(xn~1ayn—1, Zn—l)“ S ab(]— + n_l)“un - un—l”-

Using (3.4),(4.1) and (4.7), we get that

lun — un—1ll < llun — tn-1 — (gun — gun—1)|| + |Ipewn — Jpswn—1||

<V1—-20+ 62“’11% — Un—l” + ||wn — wn—l”

= 27 kl|un — n—1 [l + lwp — wa-sll,
which means that
(4.11) tn =t 1]l < (1= 27%) " wp — wn_a].
Substituting (4.7)-(4.11) into (4.6), we infer that
(4.12) st — wall < Onluwn — wn-1]),
where

b= (1-N)+A(1-2"%)""
[2“1k + V1 =2pa+ p2B2p2(1+n=1)2 + p(1 +n~ 1) (én + ab)] .

Put
(4.13)

=(1-N+r(1-2"1%)" [2-% + V1= 2pa+ p? 0212 + plEn + ab)] .

Clearly, 0,, | 8 as n — oo. It follows from (4.1), (4.2) and (4.13) that
(4.14)

0 <1e/1-2pa+p202u2 <1—k— (En+ab)p
& [826® — (én + ab)®]p? — 2[a — (1 — k)(€n + ab)]p < —k(2 — k).

It is easy to verify that (4.14) and one of (4.3)—(4.5) yield that 6 < 1.
Thus 6, < 1 for n sufficiently large. Thus (4.12) means that {w,}5%.,
is a Cauchy sequence in H. Consequently, there exists w € H such
that lim,,_,co wy, = w. By virtue of (4.11), we know that the sequence
{un}s, is a Cauchy sequence in H, that is, there exists u € H with
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lim,, 00 4, = u. Note that A, B, C are H-Lipschitz continuous. In view
of (3.5), we have

[2n = Zn1l] < p(1+ 17" |Jun — un-1]),
“yn - yn—l” < 5(1 + n—-l)”un - un—l”,
12 = zn-all < B(1+n"Hllup — un-a,

which imply that {2, }52,, {yn}o20, {#n}5%, are Cauchy sequences in
H. Hence there exist z,y, z € H such that lim, . T, = z, lim, o Yn
=y, limy_, o 2, = 2. Observe that

d(z, Au) = inf{||jz — t|| : t € Au} < ||z, — z|| + H(Aun, Au)
< |lzn — || + pllun —ull — 0

as n — 00. This means that x € Au. Similarly, we have y € Bu, z € Cu.
It follows from the continuity of the mappings A4, B, C, g, Jar, N and (3.4)
and (3.6) that

gu = Jpyw

and
w = (1—MNw+ Agu+pf —pN(z,y,2)) € H,

which imply that
w = gu+ pf — pN(z,y, 2)

and
gu = Jy(gu+pf — pN(z,y, 2)).

Lemma 3.1 ensures that w,u € H, x € Au, y € Bu and z € Cu with
w=gu+ pf — pN(z,y, 2) is a solution of the resolvent equation (2.9).
This completes the proof. O

REMARK 4.1. Theorem 4.1 extends, improves and unifies Theorem
4.1 in [4] , Theorem 3.2 in [6] and Theorem 5.2-5.4 in [7].

THEOREM 4.2. Let g : H — H be strongly monotone and Lipschitz
continuous with constants ¢ and 8, respectively, M : H — 2 be a
maximal monotone mapping with g(H) 2 Jpy(H). Let N be Lipschitz
continuous with respect to the first, second and third arguments with
constants 3,1 and a, respectively, A, B,C : H — CB(H) be H-Lipschitz
continuous with constants u,& and b, respectively. Suppose that A is
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strongly monotone with respect to the first argument of N with constant
a, B is relaxed Lipschitz with respect to the second argument of N
with constant ¢, and C' is relaxed monotone with respect to the third
argument of N with constant d. Let

(4.15) Bu>a, n€>c, k=2v1-20+ 8%

(4.16) m = /1 —2c+ 1262 + /14 2d + a2b?;
If there exists a constant p > 0 satisfying

(4.17) E+pm <1,

and one of the following conditions

(4.18)
B >m, |la—(1—-Ek)m| > k(2 - k)(824* —m?),

a—(1-km| _(a-(1=km)? k2 k)4 —m?)

322 —m? pPu? —m? ’
) k(2-k)
(4.19) Bu=m, a>(1=km, p> s g
_(d-km-a
P (T
' _ V= F2)kE — k) + (= Km — a)?
m2 — 22 ’

then for each given f € H, there exist w,u € H, x € Au, y € Bu
and z € Cu with w = gu + pf — pN(z,y, z) satisfying the general re-
solvent equation (2.9) and the sequences {wn}32, {un}olo, {Zn}ig,
{yn}y, and {z,}5°, generated by Algorithm 3.1 converge, respec-
tively, to w,u,x,y and z strongly in H.

Proof. As in the proof of Theorem 4.1, we have

(4.21) e = 1] < (1= 27) " fwwn — w1,
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and
(4.22)
”wn-H - wn”

< (= Mlwn = wnall + Mun — up-1 — (gun — gua—1)||

+ Mtn = tn_1 = p(N(Tn, Yns 20) = N(Tn_3,Yn-1,2n-1))||
< (1= Mllwn — wo1ll + A2 kffun — un—1||

+ M(un = tn—1 — p(N(Tn, Yn, 2n) — N(Za-1, Yn, 22))||

+ Ap[IN(Zn—1,Yns 2n) = N(Tn-1,Yn-1,2n) + Un — Un—1|

+ AN (Zn-1,Yn~1,2n) = N(Tn-1,Yn—1, 2n-1) — (Un — Un-1)|]
< (1= Nllwn ~ wp-all

+ 2 (27 + T= 200+ P20+ 0712 [l —

+ )\p”N(fL‘n_l, Yn» zn) - N(xn—la Yn—1, zn) + Up — un—l”
+ AN (Zn-1,Yn—1,2n) = N(Tn-1,Yn-1, 2n-1) — (Un — tn-1)-

Since B is H-Lipschitz continuous and relaxed Lipschitz with respect to
the second argument of N, and C is H-Lipschitz continuous and relaxed
monotone with respect to the third argument of N, by (3.5) we conclude
that

(4.23)

IN(Zn—1,Yns 2n) = N(Zn-1,Yn—1, 2n) + Un — 1>
= |jun — Un—le + 2(N(Zn-1,Yns Zn) = N(Tn_1,Yn—1,2n), Un — Un_1)
+ IN(Zn=1,Yn: 20) = N(@n-1, Yn—1, 2a)||”
< (1 =2+ 721+ n ")) )un — un—1%s
and
NN (Zr-1,Yn—-1,2n) — N(Zn-1,Yn-1, Zn-1) — (n — tn-1)||>
= Jun ~ tn-1)|? = 2N (Zn-1, Yn-1, 2n)
(4.24) — N(Zp—1,Yn—1,2n—-1), Un — Un—1)
+ IN(Zn—1,Yn-1,20) = N(Zn-1,Yn—1, 2n-1)||°
< (1+2d +a®*(1 + 2 ) Jup — un1 |
By virtue of (4.21)—(4.24), we know that

llwnt1 = wal

< (1= Nllwn = waa ||+ A[27 % + /T = 2pa+ B+ 1T
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+pv/1 = 2c+ n262(1+n-1)2
+pV/T+2d+ a2b2(1 + n—1)2] l[tn ~ tnoi

< enn'wn - wn—ln,

where

Opn=1—A+A(1-2"2%) " (27 %k + /T 2p0 + p2B2p2(1 + n1)2
+pV1 =2+ 7221+ n~1)2 + p\/1 + 2d + a2b2(1 + n-1)2).

Set

=1 —)\+)\(1—2_1k)—1 (2"1k+ V1 —2pa+p2,82p2+pm>.

Then 6, | 6 as n — co. The remaining portion of the proof can be
derived as in Theorem 4.1. This completes the proof. O

REMARK 4.2. Theorem 3.1 in [9] and Theorem 3.1 in {10] are special
cases of Theorem 4.2.
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