J. Korean Math. Soc. 41 (2004), No. 3, pp. 479-487

ON DECOMPOSABILITY OF FINITE GROUPS

ALl REZA ASHRAFI

ABSTRACT. Let GG be a finite group and N be a normal subgroup
of G. We denote by nec(N) the number of conjugacy classes of N
in G and N is called n-decomposable, if ncc(N) = n. Set K¢ =
{ncc(N) | N<aG}. Let X be a non-empty subset of positive integers.
A group G is called X-decomposable, if K¢ = X.

In this paper we characterise the {1,3,4}-decomposable finite
non-perfect groups. We prove that such a group is isomorphic to
SmallGroup (36,9), the 9** group of order 36 in the small group

library of GAP, a metabelian group of order 2"(225l —1), in which

n is odd positive integer and ZHT_I — 1 is a Mersenne prime or a
metabelian group of order 2"(2% — 1), where 3|n and 25 —1is a
Mersenne prime. Moreover, we calculate the set K¢, for some finite
group G.

1. Introduction and preliminaries

Let GG be a finite group and let Ng be the set of proper normal
subgroups of G. An element K of Ng is said to be n-decomposable
if K is a union of n distinct conjugacy classes of G. In this case we
denote n by nce(K). Suppose Kg = {ncc(N) | N <G} and X is a non-
empty subset of positive integers. A group G is called X-decomposable,
if K¢ = X. For simplicity, if X = {1,n} and G is X-decomposable,
then we say that G is n-decomposable.

In [14], Wujie Shi defined the notion of complete normal subgroup
of a finite group, which we called it 2-decomposable. He proved that if
G is a group and N a complete normal subgroup of G. Then N is a
minimal normal subgroup of G and it is an elementary abelian p-group.
Moreover, N C Z(O,(G)), where Op(G) is a maximal p-normal subgroup
of G,and | N | (| N | —1) || G | and in particular, | G | is even.
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Also, Shi proved some deep results about finite groups of. order peqP
containing a 2-decomposable normal subgroup. Next, Wang Jing, a
student of Wujie Shi, continued his work and defined the notion of
sub-complete normal subgroup of a group G [18], which we called it
3-decomposable. She proved that if N is a sub-complete normal sub-
group of a finite group G, then N is a group in which every element has
prime power order. Moreover, if N is a minimal normal subgroup of G,
then N C Z(Op(G)), where p is a prime factor of | G |. If N is not
a minimal normal subgroup of G, then N contains a complete normal
subgroup Nj, Ni is an elementary abelian group with order p® and we
have: (a) N = N1Q has order p®q and every element of N has prime
power order, | Q |= ¢, ¢ # p,q is a prime and G = MN;, M NNy =1,
where M = Ng(Q), (b) N is an abelian p-group with exponent < p?
or a special group; if N is not elementary abelian, then N7 < ®(G).

In [12] and [13], Shahryari and Shahabi, independent from Shi and
Jing, investigated the structure of finite groups which contains a 2- or
3- decomposable subgroup. Riese and Shahabi continue in [7], investi-
gating of the structure of finite groups with a 4-decomposable subgroup.
Using these works in some joint papers [1], [2], [3] and [4], the author
characterized the finite non-perfect X-decomposable finite groups, for
X ={1,n}, n <6 and X = {1,2,3}. He also obtained the structure of
solvable n-decomposable non-perfect finite groups.

Throughout this paper A = {1,3,4}. We continue the mentioned
problem and investigate the structure of A-decomposable finite groups.
In fact, we prove that:

THEOREM. Let G be a finite non-perfect group. If G is A-decompos-
able then G is isomorphic to SmallGroup(36,9), a metabelian group of
order 2"(271_5l — 1), in which n is odd positive integer and 2" —1lisa
Mersenne prime or a metabelian group of order 2™(25 — 1), where 3|n
and 23 — 1 is a Mersenne prime.

Throughout this paper, as usual, G’ denotes the derived subgroup of
G, Z, is the cyclic group of order n, ®(G) denotes the Frattini subgroup
of G and Z(G) is the center of G. G is called non-perfect, if G' # G.
Also, D(n) denotes the set of positive divisors of n and SmallGroup(n, )
is the t" group of order n in the small group library of GAP, [11]. All
groups considered are assumed to be finite. Our notation is standard
and taken mainly from [5], [6] and [8].
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2. Examples

In this section we calculate the set K¢ for some finite group G and
present some open questions.

ExAMPLE 2.1. Suppose that G is a non-abelian group of order pgq,
in which p and ¢ are primes and p > ¢. It is well known that ¢|p — 1
and G has exactly one normal subgroup. Suppose that H is the normal
subgroup of G. Then H is (1 + ’i;—l)-decomposable.

By the previous example, if p, ¢ are primes, g|p — 1 and X = {1,1+
251} then there exists a non-abelian X-decomposable finite group. The-
refore, the problem of existing {1, n}-decomposable finite groups can be
reduced to a number theoretic problem:

QUESTION 2.2. Is it true that every odd positive integer has a rep-
resentation of the form n =1+ 3;—1, where p, ¢ are primes and g|p — 17

Suppose k(G) denotes the number of conjugacy classes of the group
G. If H is a simple group with n = k(G) conjugacy class and G =
H x H then G is {1, n}-decomposable. Therefore, the problem of existing
{1, n}-decomposable finite groups can be reduced to a problem about
finite simple groups, as follows:

QUESTION 2.3. Suppose n > 5 is a given positive integer. Is there a
finite simple group G with n = k(G)?

EXAMPLE 2.4. Let G be a non-abelian group of order p3, p is
prime. It is well-known fact that this group has p? + p — 1 conjugacy
classes. Since every conjugacy class of G has length p, G is {1,p,2p—1}-
decomposable.

EXAMPLE 2.5. Let Ds, be the dihedral group of order 2n, n > 3.
This group can be presented by

Dop = {a,b|a® =b*=1,b"tab=a"1).

We first assume that n is odd and X = {d—*'z—1 | d|n}. In this case every
proper normal subgroup of Dy, is contained in (a) and so Da, is X-
decomposable. Next we assume that n is even and ¥ = {4 | djn ; 2
Jd}U{%2 | d|n ;2|d}. In this case, we can see that Da, has exactly two
other normal subgroups H = (a?,b) and K = {a?,ab). To complete the
example, we must compute ncc(H) and nce(K). Obviously, ncc(H) =
nec(K). If 4|n then nec(H) = % +2 and if 4 fn then nce(H) = 22 + 1.
Set A=Y U{% +2}and B =Y U{%2 + 1}. Our calculations show
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that if 4|n then Ds, is A-decomposable and if 4 fn then dihedral group
Dy, is B-decomposable.

EXAMPLE 2.6. Let QQ4, be the generalized quaternion group of order
4n, n > 2. This group can be presented by

Qan = (a,b | a® = l,bz = an,b_lab = a_1>_

Set X = {2 | djn & dis odd} {22 | d|2n & diseven} and Y =
XU {"—;4} It is a well-known fact that Q4, has n+ 3 conjugacy classes,
as follows:
AL}s {a"}; {a" eI <r <n-1)
{a¥b|0<j<n-1}; {a¥*b|0<j<n-1}

We consider two separate cases that n is odd or even. If n is odd then
every normal subgroup of Q4, is contained in the cyclic subgroup (a).
Thus, in this case @4, is X-decomposable. If nn is even, we have two other
normal subgroups (a?, b) and (a2, ab) which are both "TH-decomposable.
Therefore, Q4 is Y-decomposable.

Now it is natural to generally ask about the set Kg = {ncc(A4) | A<
G}. We end this section with the following question:

QUESTION 2.7. Suppose X is a finite subset of positive integers
containing 1. Is there a finite group G which is X-decomposable?

3. On A-decomposable finite groups

The aim of this section is to prove the main result of the paper. First
of all, we consider the abelian case.

LEMMA 3.1. Let G be an abelian finite group. Set X = D(n) — {n},
in which n = |G|. Then G is X -decomposable.

Proof. The proof is straightforward. O
COROLLARY. There is no abelian A-decomposable finite group.

Set I = {8,12, 18,20, 24, 28, 30, 42, 48, 54, 78,96, 100, 294}. In the end
of this paper, we write a GAP program to show that there is no finite
group G of order n,n € I, such that G is A — decomposable. Using this
program, we have:

LEMMA 3.2. There is no A-decomposable finite groups of order n,n €
I. Moreover, if G is a A-decomposable group of order 36 then G =
SmallGroup(36,9).
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Proof. Tt follows from a GAP program in the end of the paper. [

From the Corollary of Lemma 3.1, there is no abelian A-decomposable
finite group. So we can restrict our investigation on the structure of
non-abelian A-decomposable finite groups. From now on G denotes a
non-abelian finite group.

LeMMA 3.3. Suppose G is an A-decomposable finite group and K
and H are 3- and 4-decomposable subgroups of G, respectively. Then
K C H and G has a unique 3-decomposable subgroup. Moreover, G is
centerless or |Z(G)| = 3 and G has a unique 4-decomposable subgroup,
which is a 3-group containing Z(G).

Proof. Suppose L is another 3-decomposable subgroup of G and T =
LK. Then G = K x L, a contradiction. Therefore, the 3-decomposable
subgroup of G is unique. Also, if K ¢ H then KN H = 1 and so
G = H x K, which is impossible. We now assume that Z(G) # 1. Since
G is A-decomposable, |Z(G)| =3 and Z(G) C H.

We next prove that H is a 3-group. By (7, Theorem 1], H is a p-group

and H” = 1, H & Ag, the alternating group of degree 5, and @% =S

or it is a solvable group of order 3%p?, where p # 3 is prime and a, b are
positive integers. Since Z(G) C H, H is not isomorphic to As. Suppose
|H| = 3%®. Then by [7, Theorem 2], H is a Frobenius group with kernel
M D Z(G), where M is a Sylow 3-subgroup of H, which is a union of
three conjugacy classes and % is cyclic of order p. But a Frobenius
group is centerless, a contradiction. Therefore H is 3-group.

Finally, suppose that M is another 4-decomposable subgroup of G.
By our argument M is a 3-group. Consider T' = M H. Since G is A-
decomposable, T' = G, i.e., G is 3-group with a 4-decomposable subgroup
H of order, say 3", r > 1. Suppose |G| = 3", n > r. Then 3" — 3|37,
which is our final contradiction. O

PROPOSITION 3.4. Let G be a non-perfect A-decomposable finite
group. G’ is 3-decomposable if and only if G' = SmallGroup(36,9)

Proof. Suppose G’ is 3-decomposable. First of all, we claim that
G is not a p-group. To do this, we assume that G is a non-perfect A-
decomposable p-group of order p”. By Lemma 3.3, p = 3 and G has
a unique 4- decomposable subgroup H containing Z(G) of order, say
3". So 3" — 3|3", a contradiction. Next, we show that G’ is elementary
abelian. Assume that G’ = 1U Clg(g) U Clg(h), where Clg(z) denotes
the conjugacy class of G containing z. If g7! € Clg(h) then by [13,
Proposition 1], G’ is elementary abelian, as desired. Suppose g~! €
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Clg(g). If (o(g),o(h)) = 1 then by [13, Lemma 5], 1 # G” < G’, which
is impossible. Also, if (0(g),0(h)) # 1 then by [13, Proposition 2], G’ is
a metabelian p-group. It is easy to see that G’ is abelian and ®(G’) = 1.
Thus G’ is elementary abelian.

We now assume that H is a 4-decomposable subgroup of G. By
Lemma 3.3, G’ C H and so H = G’ UClg(k). By [7, Theorem 1], H is
a p-group or a solvable group of order p%q®, where p and ¢ are distinct
primes and a,b are positive integers. In what follows, we consider two
separate cases that whether or not G has a 4-decomposable p-subgroup.

Case 1. G does not have a 4-decomposable p-subgroup. In this case,
we can assume that H has order p%¢®. Let N be a minimal normal
subgroup of H. Then N is a 3-decomposable subgroup of G and so
N = @G'. On the other hand, G’ is a Sylow subgroup of H. Suppose
|G'| = p™ Thus |H| = p"¢q and H contains a G-conjugacy class of
order p"(q — 1). Since H is a maximal subgroup of G, |G| = p"gr,
where 7 is prime. Assume that r ¢ {p, ¢} then G is a solvable group of
order p"qr and contains a 4-decomposable subgroup of order p™r. This
implies that ¢ = 2,7 = 3 or ¢ = 3,7 = 2. Thus |G| = 6p",p # 2,3.
Suppose 1,a and b are the lengths of the G-conjugacy classes of G’.
Consider the equation p™ = 1+ a + b and possible pairs (a,b). It is
easy to see that p fa or p fb. Using a simple calculation one can see that
|G| € {30,42,78,294}. But, this contradicts by Lemma 3.2. Next we
assume that » = ¢. Using similar argument as in above, we can see
that ¢ = 2 and |G| € {1220,28,36,100}. Apply Lemma 3.2, we have
G = SmallGroup(36,9). Finally, if »r = p then |G’| = p™*!, which is
impossible.

Case 2. G has a 4-decomposable p-subgroup H. Suppose |H| = p”,
where p is prime and n > 1. Since H is maximal, |G| = p"q, where ¢ is
a prime. Since G is not a p-group, q # p. By assumption G’ has order
p" ! and |Clg(k)| = p» '(p—1). Thus p =2 or p = 1+ q. Suppose
p=2and y € H is an element of order ¢ . Then |G| = 2"q. Consider
the subgroup T = G'(y). Clearly T is a 4-decomposable subgroup of G
and so ¢ = 3. This shows that |G| = 2" - 3. Write 2" ! =1+ a+ b,
where a, b are class lengths of G. We can assume that 2 fa and 2|b. Thus
a=1or3. Ifa=1 then by Lemma 3.3, |Z(G)| = 3 and H is a 3-group,
which is impossible. If @ = 3 then |G| = 48 or 96 and by Lemma 3.2,
we lead to a contradiction. Hence p = 1+ ¢ and |G| = 2 - 3". Using a
similar argument as in above, we can see that |G| = 18. This is our final
contradiction. U
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PROPOSITION 3.5. Let G be a non-perfect A-decomposable finite
group and G’ is 4-decomposable subgroup of G. Then G is isomorphic

to a metabelian group of order 2"(2"7—1 — 1), in which n is odd positive

integer and 2"7" —1 is a Mersenne prime or a metabelian group of order
2"(25 — 1), where 3|n and 23 — 1 is a Mersenne prime.

Proof. Suppose G’ is 4-decomposable and H is a 3-decomposable
subgroup of G. By Lemma 3.3, H C G'. By [7, Theorem 1], G’ is a
p-group or a solvable group of order p®q®, where p and ¢ are distinct
primes and a,b are positive integers. We conclude that G is solvable
and so G” = 1 or H. We first assume that G” = H. If G’ is not a
p-group, then |G'| = p™¢™, where p, ¢ are distinct primes and m,n are
positive integers. Since G’ is non-abelian, it is a Frobenius group with
kernel M 2 H, where M is a Sylow ¢-subgroup of G’ and QMI is cyclic of
order p. Obviously, M = H is of order ¢, |G'| = p¢g™ and |G| = spg™,
for a prime s. Hence we get p=2or p=1+s. If p =2 then G has
a subgroup of index 2, say T'. Since T has a G-conjugacy class of order
(s —1)¢g™, s = 2,3. Thus |G| = 4¢™ or 6¢™. Using a similar method as
in Proposition 3.4, we can see that |G| € {12,18,20,28,30,36, 42, 54},
which by Lemma 3.2, leads to a contradiction. So assume that p = 3
and s = 2 then |G| = 6¢™ and |G| € {18,24,30,42,48,54,78,96,294},
which is impossible.

Therefore, G’ is abelian and since it contains only one normal sub-
group of G, G’ is p-group. Suppose |G’| = p", |H| = p' and |G| = p"q,
in which p and ¢ are distinct primes and n,t are positive integers with
t < n. Thus G’ has a G-conjugacy class of length p*(p"~t — 1). This
implies that p = 2 and t = n —~ 1 or ¢ = p"* — 1. Suppose p = 2
and t = n — 1. Then |G| = 2"%¢ and |H| = 2" !. Choose an element
y of order ¢ and define the subgroup T to generate by y and H. Since
H has a G-conjugacy class of length 2" (g — 1), ¢ = 2,3. Now we
can use again, a similar method as in Proposition 3.4, to prove that
|G| € {24,48,96}, contradict by Lemma 3.2. Therefore, ¢ = 2" — 1.
Suppose that 2! = 1+ a+ b, where a and b are class lengths of G. With-
out lose of generality, we can assume that alg. By assumption a # 1.
Thus a = ¢ and b = 2 — 2"~%. This shows that ¢ = %! or 2 which

3
completes the proof. O

We now ready to state the main result of the paper.

THEOREM. Let G be a finite non-perfect A-decomposable finite
group. Then G is isomorphic to SmallGroup(36,9), a metabelian group

of order 2”(271_5L — 1), in which n is odd positive integer and 2" —1is
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a Mersenne prime or a metabelian group of order 2"(23 — 1), where 3|n
and 23 —1 is a Mersenne prime.

Proof. It follows from Lemma 3.1, Proposition 3.4 and Proposition
3.5. O

A GAP Program

AppendTo("x.txt", "Beginning the Program", "\n");
E:=[8,12,18,20,24,28,30,42,48,54,78,96,100,294] ;
for m in E do
n:=NrSmallGroups(m) ;
F:=Set([1,3,4]);
for i in [1,2..n] do
G1:={1;
G:=[];
g:=SmallGroup(m,i);
h:=NormalSubgroups(g) ;
di:=Size(h);d:=d1-1;
for j in [1,2..d] do
s:=FusionConjugacyClasses(h[j]l,g);
s1:=Set(s);
Add(G,s1);
od;
for k in G do
a:=Size(k);
A4d(G1,a);
od;
G2:=Set(G1);
if G2=F then AppendTo("x.txt","S(",m,",",i, ")","");fi;
od;
od;
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