ON THE GENUS OF $\mathbb{S}^m \times \mathbb{S}^n$

PAOLA CRISTOFORI

ABSTRACT. By using a recursive algorithm, we construct edgecoloured graphs representing products of spheres and consequently we give upper bounds for the regular genus of $\mathbb{S}^m \times \mathbb{S}^n$, for each m, n > 0.

1. Introduction

Throughout this paper we shall work in the PL category. In the following the term "manifold" will denote a closed, connected one and "graph" a finite connected multigraph (i.e. without loops).

An (n+1)-coloured graph (without boundary) is a pair (Γ, γ) , where $\Gamma = (V(\Gamma), E(\Gamma))$ is a graph, regular of degree n+1, and $\gamma : E(\Gamma) \to \Delta_n = \{0, 1, \ldots, n\}$ a map such that $\gamma(e) \neq \gamma(f)$, for each pair e, f of adjacent edges of Γ . For each $B \subseteq \Delta_n$, the B-residues of (Γ, γ) are the connected components of the graph $\Gamma_B = (V(\Gamma), \gamma^{-1}(B))$. For each $c \in \Delta_n$, we set $\hat{c} = \Delta_n \setminus \{c\}$ and we shall write Γ_{cd} instead of $\Gamma_{\{c,d\}}$.

An (n+1)-coloured graph is called *contracted* if and only if for every $c \in \Delta_n$, $\Gamma_{\hat{c}}$ is connected.

From now on we often drop the edge-colorations, writing Γ instead of (Γ, γ) .

Let K be an n-dimensional pseudocomplex, the $disjoint\ star\ std(s,K)$ of a simplex s in K is the disjoint union of the n-simplexes containing s, with re-identification of the (n-1)-simplexes containing s and of all their faces; the $disjoint\ link$ of s in K is the complex $lkd(s,K) = \{t \in std(s,K) | s \cap t = \emptyset\}$.

Received May 14, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 57M15, 57Q15, 05C10.

Key words and phrases: regular genus, product of spheres.

^(*) Work performed under the auspicies of G.N.S.A.G.A. (C.N.R.) and supported by M.I.U.R. of Italy.

A coloured *n*-complex is a homogeneous pseudocomplex K together with a "coloration" of its vertices by Δ_n , which is injective on every simplex.

Given an (n+1)-coloured graph Γ , we can construct a coloured n-complex $K(\Gamma)$ in the following way:

- take an *n*-simplex s(v) for each $v \in V(\Gamma)$ and label its vertices by Δ_n ;
- for each $c \in \Delta_n$ and each pair v, w of c-adjacent vertices in Γ , identify the (n-1)-faces of s(v) and s(w) opposite to the vertices labelled c, so that equally labelled vertices coincide.

The above construction can be easily reversed in order to associate an (n+1)-coloured graph $\Gamma(K)$ to each coloured n-complex K. Therefore these constructions give rise to a correspondence between (n+1)-coloured graphs and coloured n-complexes.

It is easy to see that $\Gamma(K(\Gamma)) = \Gamma$; conversely $K(\Gamma(K)) = K$ if and only if the disjoint star of every simplex in K is strongly connected. In this case |K| is said to be represented by Γ .

A contracted (n + 1)-coloured graph representing a manifold M is called a *crystallization* of M.

By results in [8] and [3], every n-manifold admits crystallizations.

The above definitions, together with a general survey on edge-coloured graphs, can be found in [4].

Given an (n+1)-coloured graph Γ , each cyclic permutation $\varepsilon = (\varepsilon_0, \varepsilon_1, \dots, \varepsilon_n)$ of Δ_n defines a particular imbedding (called *regular*) of Γ into a closed surface F_{ε} , whose Euler characteristic is (see [5] and [6]):

(*)
$$\chi(F_{\varepsilon}) = \sum_{i \in \mathbb{Z}_{n+1}} g_{\varepsilon_i \varepsilon_{i+1}}(\Gamma) + \frac{1}{2} (1 - n) p(\Gamma)$$

where $g_{ij}(\Gamma)$ is the number of connected components of Γ_{ij} and $p(\Gamma)$ is the number of vertices of Γ .

 F_{ε} is orientable or non-orientable according to Γ being bipartite or not

The regular genus $\rho(\Gamma)$ of Γ is defined as:

$$\rho(\Gamma) = \min\{\rho_{\varepsilon}(\Gamma)|\varepsilon \text{ is a cyclic permutation of } \Delta_n\}$$

where $\rho_{\varepsilon}(\Gamma)$ denotes the genus of F_{ε} .

Given an n-manifold M the regular genus of M is the minimum among the regular genera of the graphs representing M.

In the following we shall describe a construction, introduced in [7], which, starting from two coloured graphs representing two polyhedra, produces a coloured graph representing their product.

If we apply this construction to the product of spheres, we get several simplifications which, given m, n > 0, allow us to build, by inductive steps, a graph representing $\mathbb{S}^m \times \mathbb{S}^n$. Furthermore we obtain some relations among the numbers of coloured cycles in the resulting graphs, by which we can find a "minimal" permutation (i.e. a cyclic permutation defining a regular imbedding of minimal genus) and we can compute the genera of these graphs in a recursive way. We also give direct formulas in the particular cases of m = 2, 3.

2. Representing products by edge-coloured graphs

We briefly outline the construction introduced in [7], to obtain "products" of coloured graphs.

Let σ^m (resp. τ^n) be an m-dimensional (resp. n-dimensional) simplex, whose vertices are labelled by $\{v_0, \ldots, v_m\}$ (resp. by $\{w_0, \ldots, w_n\}$); then the set of the vertices of the product ball complex $\sigma^m \times \tau^n$ is $\{(v_r, w_s) | r \in \Delta_m, s \in \Delta_n\}$.

Let $\mathbf{A}(\sigma^m, \tau^n)$ (m, n > 0) be the matrix with (m + n + 1) columns, whose $\binom{m+n}{n}$ rows are sequences of elements of

$$\{v_0,\ldots,v_m\}\times\{w_0,\ldots,w_n\}$$

of the following type:

$$(v_m, w_n) = (v_{r_m}, w_{s_n}), \dots, (v_{r_0}, w_{s_0}) = (v_0, w_0)$$

$$0 \le r_0 \le r_1 \le \cdots \le r_m = m, 0 \le s_0 \le s_1 \le \cdots \le s_n = n.$$

These elements can be thought as "words" of length (m+n+1) in the alphabet $\{v_0, \ldots, v_m\} \times \{w_0, \ldots, w_n\}$, lexicographically ordered, where each "letter" is obtained by decreasing by one, at each step, the index of one and only one of the two components v_r and w_s .

The sequences represent the (m+n+1) vertices of $\{v_0, \ldots, v_m\} \times \{w_0, \ldots, w_n\}$ which span the maximal simplexes of a simplicial triangulation $\sigma^m \boxtimes \tau^n$ of $\sigma^m \times \tau^n$ (see [2], [9]).

The matrix $\mathbf{A}(\sigma^m, \tau^n)$ can be constructed according to the following scheme:

$$\mathbf{A}(\sigma^m, \tau^n) = \begin{pmatrix} (v_m, w_n) \\ \cdot & \mathbf{B} = \mathbf{A}(\sigma^{m-1}, \tau^n) \\ \cdot & \\ \cdot & \mathbf{C} = \mathbf{A}(\sigma^m, \tau^{n-1}) \\ (v_m, w_n) \end{pmatrix}$$

where $\mathbf{A}(\sigma^{m-1}, \tau^n)$ (resp. $\mathbf{A}(\sigma^m, \tau^{n-1})$) represents the simplicial complex $\sigma^{m-1} \boxtimes \tau^n$ (resp. $\sigma^m \boxtimes \tau^{n-1}$), obtained by deleting the vertex v_m (resp. w_n) from σ^m (resp. τ^n) and has $\binom{m+n-1}{n}$ (resp. $\binom{m+n-1}{m}$) rows.

Let Γ' (resp. Γ'') be an (m+1)-coloured (resp. (n+1)-coloured) graph, an (m+n+1)-coloured graph $\Gamma' \boxtimes \Gamma''$ representing $|K(\Gamma') \times K(\Gamma'')|$ can be obtained in the following way:

- for each pair (α^i, β_j) of vertices of $V(\Gamma') \times V(\Gamma'')$, consider the $\binom{m+n}{n}$ vertices $\delta^i_j(k)$ which are in one-to-one correspondence with the rows of the matrix $\mathbf{A}(\sigma^m_i, \tau^n_j)$, where σ^m_i (resp. τ^n_j) is the m-simplex (resp. n-simplex) of $K(\Gamma')$ (resp. of $K(\Gamma'')$) represented by α^i (resp. by β_i);
- set $V(\Gamma' \boxtimes \Gamma'') = \{\delta_j^i(k)|i=1,\ldots,\#V(\Gamma'), j=1,\ldots,\#V(\Gamma''), k=1,\ldots,\binom{m+n}{n}\};$
- for each vertex $\delta_j^i(k) \in V(\Gamma' \boxtimes \Gamma'')$ $(i = 1, ..., \#V(\Gamma'), j = 1, ..., \#V(\Gamma''), k = 1, ..., \binom{m+n}{n})$, let us denote by ω_k its corresponding row of $\mathbf{A}(\sigma_i^m, \tau_j^n)$; then:
- a) for each $d \in \Delta_{m+n}$, delete from ω_k the unique element (v_r, w_s) such that r+s=d, yielding a sequence $\omega_k(\hat{d})$. If there exists another row ω_h of $\mathbf{A}(\sigma_i^m, \tau_j^n)$ such that $\omega_k(\hat{d}) = \omega_h(\hat{d})$, then the way the matrix is constructed guarantees that it is unique; in this case join $\delta_j^i(k)$ and $\delta_j^i(h)$ by a d-coloured edge;
- b) if v_r (resp. w_s) appears exactly once in a pair $(v_r, w_{s'})$ (resp. $(v_{r'}, w_s)$) of ω_k for some $r \in \Delta_m$ (resp. for some $s \in \Delta_n$), let α^t (resp. β_t) be the vertex of Γ' (resp. of Γ'') r-adjacent with α^i (resp. s-adjacent with β_j). Join $\delta_j^i(k)$ and $\delta_j^t(k)$ (resp. $\delta_j^i(k)$ and $\delta_j^t(k)$) by a d-coloured edge, with d = r + s' (resp. d = r' + s).

In the particular case of products of spheres, we can simplify the above procedure by using the standard (p+1)-coloured graph $\Gamma^{(p)}$ representing \mathbb{S}^p and having two vertices joined by p+1 edges.

Starting from $\Gamma^{(m)}$ and $\Gamma^{(n)}$, we construct $\Gamma^{(m)} \boxtimes \Gamma^{(n)}$ as follows:

-
$$\#V(\Gamma^{(m)} \boxtimes \Gamma^{(n)}) = 4\binom{m+n}{n};$$

- if $\omega_k(\hat{d}) = \omega_h(\hat{d})$, join $\delta^i_j(k)$ and $\delta^i_j(h)$ (i, j = 1, 2) by a d-coloured edge;
- if v_r (resp. w_s) appears exactly once in a pair $(v_r, w_{s'})$ (resp. $(v_{r'}, w_s)$) of ω_k , join $\delta_1^1(k)$ with $\delta_1^2(k)$ (resp. with $\delta_2^1(k)$) and $\delta_2^2(k)$ with $\delta_2^1(k)$ (resp. with $\delta_1^2(k)$) by a d-coloured edge, with d = r + s' (resp. d = r' + s).

It is clear that the structure of this "product" graph depends only on the structure of the matrix $\mathbf{A}(\sigma^m, \tau^n)$; moreover, the inductive construction of $\mathbf{A}(\sigma^m, \tau^n)$ allows us to describe a method to build $\Gamma^{(m)} \boxtimes \Gamma^{(n)}$, starting from $\Gamma^{(m-1)} \boxtimes \Gamma^{(n)}$ and $\Gamma^{(m)} \boxtimes \Gamma^{(n-1)}$, without further reference to $\mathbf{A}(\sigma^m, \tau^n)$. Construct an (m+n+1)-coloured graph $\Gamma^{(m,n)}$ as follows:

- $\begin{array}{l} -\ V(\Gamma^{(m,n)}) = V(\Gamma^{(m-1)} \boxtimes \Gamma^{(n)}) \cup V(\Gamma^{(m)} \boxtimes \Gamma^{(n-1)}) = \{\bar{\delta}^i_j(k)|i,j=1,2 \ k=1,\ldots,{m+n-1 \choose n}\} \cup \{\bar{\delta}^i_j(k)|i,j=1,2 \ k=1,\ldots,{m+n-1 \choose m}\}; \\ -\ \text{for each } k=1,\ldots,{m+n-1 \choose n} \ (\text{resp. } k=1,\ldots,{m+n-1 \choose m}) \ \text{join } \bar{\delta}^1_1(k) \end{array}$
- for each $k=1,\ldots,\binom{m+n-1}{n}$ (resp. $k=1,\ldots,\binom{m+n-1}{m}$) join $\bar{\delta}_1^1(k)$ with $\bar{\delta}_1^2(k)$ (resp. $\bar{\delta}_1^1(k)$ with $\bar{\delta}_2^1(k)$) and $\bar{\delta}_2^2(k)$ with $\bar{\delta}_2^1(k)$ (resp. $\bar{\delta}_2^2(k)$ with $\bar{\delta}_1^2(k)$) by an (m+n)-coloured edge;
- $\bar{\delta}_{2}^{2}(k)$ with $\bar{\delta}_{1}^{2}(k)$ by an (m+n)-coloured edge; - for each $k=\binom{m+n-2}{n}+1,\ldots,\binom{m+n-2}{n}+\binom{m+n-2}{n-1}$ join $\bar{\delta}_{j}^{i}(k)$ and $\bar{\delta}_{j}^{i}(k-\binom{m+n-2}{n})$ (i,j=1,2) by an (m+n-1)-coloured edge; for the remaining vertices of $\Gamma^{(m,n)}$ re-establish the edges as they are in $\Gamma^{(m-1)}\boxtimes\Gamma^{(n)}$ and $\Gamma^{(m)}\boxtimes\Gamma^{(n-1)}$.

Proposition 1. $\Gamma^{(m,n)} = \Gamma^{(m)} \boxtimes \Gamma^{(n)}$.

Proof. Note that, for each $d \neq m+n-1$, if two rows of the submatrix **B** (resp. **C**) of **A** corresponding to $\mathbf{A}(\sigma^{m-1}, \tau^n)$ (resp. $\mathbf{A}(\sigma^m, \tau^{n-1})$), say ω_k and ω_h , lead to equal sequences $\omega_k(\hat{d})$ and $\omega_h(\hat{d})$ in **B** (resp. in **C**) they also lead to equal sequences in **A**; furthermore if v_r or $w_r \neq w_n$ (resp. w_s or $v_s \neq v_m$) appears once in a row of **B** (resp. of **C**), then it appears once in the same row of **A**. Thus all d-coloured edges $(d \neq m+n-1)$ of $\Gamma^{(m-1,n)}$ and $\Gamma^{(m,n-1)}$ remain unchanged in $\Gamma^{(m,n)}$;

Furthermore, following the more detailed scheme below for the matrix $\mathbf{A}(\sigma^m, \tau^n)$, it is easy to see that:

$$\mathbf{A} = \mathbf{A}(\sigma^{m}, \tau^{n}) = \begin{pmatrix} (v_{m}, w_{n}) & (v_{m-1}, w_{n}) & \mathbf{B}'' = \mathbf{A}(\sigma^{m-2}, \tau^{n}) \\ \cdot & (v_{m-1}, w_{n}) & \mathbf{B}' = \mathbf{A}(\sigma^{m-1}, \tau^{n-1}) \\ \cdot & (v_{m}, w_{n-1}) & \mathbf{C}' = \mathbf{A}(\sigma^{m-1}, \tau^{n-1}) \\ (v_{m}, w_{n}) & (v_{m}, w_{n-1}) & \mathbf{C}'' = \mathbf{A}(\sigma^{m}, \tau^{n-2}) \end{pmatrix}$$

a) w_n (resp. v_m) appears once in all rows of the submatrix \mathbf{B}' (resp. \mathbf{C}') corresponding to $\mathbf{A}(\sigma^{m-1}, \tau^{n-1})$, but twice in all the corresponding rows of \mathbf{A} , i.e. all the (m+n-1)-coloured edges of

 $\Gamma^{(m-1,n)}$ and $\Gamma^{(m,n-1)}$ joining the vertices corresponding to \mathbf{B}' and \mathbf{C}' disappear in \mathbf{A} ;

- b) each row of \mathbf{B}' , with the element (v_{m-1}, w_n) deleted, is equal to a row of \mathbf{C}' , with the element (v_m, w_{n-1}) deleted, therefore the corresponding vertices are joined by (m+n-1)-coloured edges;
- c) v_m (resp. w_n) appears once in the first $\binom{m+n-1}{n}$ (resp. in the last $\binom{m+n-1}{m}$) rows of **A**, therefore the corresponding vertices are joined by (m+n)-coloured edges.

Using the above construction and starting from the (r+2)-coloured graphs $\Gamma^{(1,r)}$ and $\Gamma^{(r,1)}$ $(r \ge 1)$, it is possible to build by successive steps, the (m+n+1)-coloured graph $\Gamma^{(m,n)}$, for each m,n>0.

REMARK 1. Note that all $\Gamma^{(m,n)}$ have a double simmetry. In fact, for each $k=1,\ldots,\binom{m+n}{n}$, each edge between the vertices $\bar{\delta}_1^1(k)$ and $\bar{\delta}_1^2(k)$ (resp. $\bar{\delta}_1^1(k)$ and $\bar{\delta}_2^1(k)$) has a corresponding edge, with the same colour, between $\bar{\delta}_2^2(k)$ and $\bar{\delta}_2^1(k)$ (resp. $\bar{\delta}_2^2(k)$ and $\bar{\delta}_1^2(k)$).

An easily implemented program allows us to build $\Gamma^{(m,n)}$ for each m, n > 0.

As an example, figure 1 shows $\Gamma^{(3,3)}$. Since its number of vertices is too big (= 80) to fit the picture, we only drew part of the graph, which, because of the simmetries, is sufficient to represent the whole of it.

3. The genus of $\Gamma^{(m,n)}$

Let us denote by g_{cd} , where $c, d \in \Delta_{m+n}$ (resp. \bar{g}_{cd} where $c, d \in \Delta_{m+n-1}$) (resp. \bar{g}_{cd} where $c, d \in \Delta_{m+n-1}$) the number of connected components of $\Gamma_{cd}^{(m,n)}$ (resp. $\Gamma_{cd}^{(m-1,n)}$) (resp. $\Gamma_{cd}^{(m,n-1)}$). Moreover, let $\alpha_{m,n}^c$ (resp. $\beta_{m,n}^c$) ($c \in \Delta_{m+n-2}$) denote the number of $\{c, m+n\}$ -residues of length two of $\Gamma^{(m,n)}$, whose vertices correspond to rows of the submatrix $\mathbf{A}(\sigma^m, \tau^{n-1})$ (resp. $\mathbf{A}(\sigma^{m-1}, \tau^n)$) of $\mathbf{A}(\sigma^m, \tau^n)$ (see the scheme above).

Figure 1

LEMMA 2. We have the following equalities:

$$g_{cd} = \bar{g}_{cd} + \bar{\bar{g}}_{cd} \quad \text{for each } c, d \in \Delta_{m+n-2}$$

$$g_{c\ m+n} = \bar{g}_{c\ m+n-1} + \bar{\bar{g}}_{c\ m+n-1} \quad \text{for each } c \in \Delta_{m+n-2}$$

$$g_{m+n-1\ m+n} = \binom{m+n-2}{n-1} + 2\binom{m+n-2}{n} + 2\binom{m+n-2}{n-2} + 2\binom{m+n-2}{n-2}$$

$$g_{c\ m+n-1} = \bar{g}_{c\ m+n-1} + \bar{\bar{g}}_{c\ m+n-1} - \frac{1}{2}(\alpha_{m-1,n}^c + \beta_{m,n-1}^c)$$

$$\text{for each } c \in \Delta_{m+n-3}$$

$$g_{m+n-2\ m+n-1} = \bar{g}_{m+n-2\ m+n-1} + \bar{\bar{g}}_{m+n-2\ m+n-1} - \binom{m+n-2}{n-1}.$$

Proof. By the construction of section 2 it is clear that all c-coloured edges $(c \in \Delta_{m+n-2})$ of $\Gamma^{(m,n)}$ are the same as in $\Gamma^{(m-1,n)}$ and $\Gamma^{(m,n-1)}$, while the (m+n)-coloured edges in $\Gamma^{(m,n)}$ take the places of the (m+n-1)-coloured edges of $\Gamma^{(m-1,n)}$ and $\Gamma^{(m,n-1)}$; therefore we obtain equalities 1) and 2).

To prove the third equality, recall the scheme for $\mathbf{A}(\sigma^m, \tau^n)$ in the proof of Proposition 1.

Note that, for each row ω_k of \mathbf{B}'' (resp. \mathbf{C}''), we have two $\{m+n-1,m+n\}$ -residues, whose sets of vertices are $\{\bar{\delta}_1^1(k),\bar{\delta}_1^2(k)\}$ and $\{\bar{\delta}_2^2(k),\bar{\delta}_2^1(k)\}$ (resp. $\{\bar{\bar{\delta}}_1^1(k),\bar{\bar{\delta}}_2^1(k)\}$ and $\{\bar{\bar{\delta}}_2^2(k),\bar{\bar{\delta}}_1^2(k)\}$). Furthermore, for each $k=\binom{m+n-2}{n}+1,\ldots,\binom{m+n-2}{n}+\binom{m+n-2}{n-1}$, we

Furthermore, for each $k = {m+n-2 \choose n} + 1, \ldots, {m+n-2 \choose n} + {m+n-2 \choose n-1}$, we have only one $\{m+n-1, m+n\}$ -residue, whose set of vertices is $\{\bar{\delta}_1^1(k), \bar{\delta}_2^2(k), \bar{\delta}_2^2(k), \bar{\delta}_2^1(k), \bar{\delta}_2^1(k), \bar{\delta}_2^2(k), \bar{\delta}_2^1(k), \bar{\delta}_2^1(k), \bar{\delta}_2^2(k), \bar{\delta}_1^2(k)\}$, where $k = k - {m+n-2 \choose n}$ (see figure 2). Equality (3) follows.

Let us now consider the $\{c, m+n-1\}$ -residues of $\Gamma^{(m-1,n)}$ and $\Gamma^{(m,n-1)}$ $(c \in \Delta_{m+n-2})$; note that those having all vertices corresponding to rows of \mathbf{B}'' or \mathbf{C}'' don't change in $\Gamma^{(m,n)}$.

For $c \neq m+n-2$, we have the following situations:

- (i) for every pair of length two $\{c, m+n-1\}$ -residues of $\Gamma^{(m-1,n)}$ (resp. $\Gamma^{(m,n-1)}$) corresponding to a row ω_k of \mathbf{B}' (resp. \mathbf{C}'), there exists exactly one $\{c, m+n-1\}$ -residue of $\Gamma^{(m,n-1)}$ (resp. $\Gamma^{(m-1,n)}$) of length four, whose vertices correspond to the row ω_h of \mathbf{C}' , with $h=k-\binom{m+n-2}{n}$ (resp. of \mathbf{B}' with $h=k+\binom{m+n-2}{n}$) and conversely;
- (ii) for every pair of length four $\{c, m+n-1\}$ -residues of $\Gamma^{(m-1,n)}$, whose sets of vertices are $\{\bar{\delta}_i^1(k), \bar{\delta}_i^1(h)|i=1,2\}$ and $\{\bar{\delta}_i^2(k), \bar{\delta}_i^2(h)|i=1,2\}$, corresponding to the rows ω_k and ω_h of \mathbf{B}' , there exists

exactly two $\{c,m+n-1\}$ -residues of $\Gamma^{(m,n-1)}$ of length four, whose sets of vertices are $\{\bar{\delta}_1^i(k'),\bar{\delta}_1^i(h')|i=1,2\}$ and $\{\bar{\delta}_2^i(k'),\bar{\delta}_2^i(h')|i=1,2\}$, corresponding to the rows $\omega_{k'}$ and $\omega_{h'}$ of C', with $k'=k-\binom{m+n-2}{n}$ and $h'=h-\binom{m+n-2}{n}$ and conversely.

These are the only $\{c, m+n-1\}$ -residues which change in $\Gamma^{(m,n)}$. It is easy to see that in case (ii) the number of the residues doesn't change and in case (i) the three residues produce two of length four in $\Gamma^{(m,n)}$.

Finally, let us consider the case c = m + n - 2. The only $\{m + n - 2, m + n - 1\}$ -residues changing in $\Gamma^{(m,n)}$, are as follows:

(iii) for each $k = \binom{m+n-2}{n} + 1, \ldots, \binom{m+n-2}{n} + \binom{m+n-3}{n-1}$ (resp. $k = \binom{m+n-3}{n-1} + 1, \ldots, \binom{m+n-2}{n-1}$), there is exactly one $\{m+n-2, m+n-1\}$ -residue of length eight in $\Gamma^{(m-1,n)}$ (resp. in $\Gamma^{(m,n-1)}$), whose set of vertices is $\{\bar{\delta}^i_j(k), \bar{\delta}^i_j(h) | i, j = 1, 2\}, h = k - \binom{m+n-3}{n-1}$ (resp. $\{\bar{\delta}^i_j(k), \bar{\delta}^i_j(h) | i, j = 1, 2\}, h = k + \binom{m+n-3}{n-2}$), to which corresponds a pair of length two $\{m+n-2, m+n-1\}$ -residues of $\Gamma^{(m,n-1)}$ (resp. of $\Gamma^{(m-1,n)}$), whose sets of vertices are $\{\bar{\delta}^1_1(k'), \bar{\delta}^1_2(k')\}$ and $\{\bar{\delta}^2_2(k'), \bar{\delta}^1_2(k')\}$, with $k' = k - \binom{m+n-2}{n}$ (resp. $\{\bar{\delta}^1_1(k'), \bar{\delta}^1_2(k')\}$ and $\{\bar{\delta}^2_2(k'), \bar{\delta}^1_2(k')\}$, with $k' = k + \binom{m+n-2}{n}$).

Since, as can be directly seen, every three residues which correspond, yield two of length six in $\Gamma^{(m,n)}$, equality 5) easily follows.

Let us now consider the graphs $\Gamma^{(1,n)}$ $(n=1,2,\ldots)$, which are shown in figure 3.

An easy calculation gives:

$$g_{01} = g_{02} = \dots = g_{0n} = 2n - 1$$
 $g_{0\ n+1} = 2n$
 $g_{1\ n+1} = g_{2\ n+1} = \dots = g_{n\ n+1} = 2n - 1$
 $g_{cd} = 2(n-1)$ for each $c = 1, \dots, n-1$ and for each $d = 1, \dots, n$.

The following result guarantees that similar relations hold among the number of residues g_{cd} of $\Gamma^{(m,n)}$ (m,n>0):

PROPOSITION 2. For each m, n > 0, there exist constants $r_{m,n}, s_{m,n}, t_{m,n}, u_{m,n}$ such that

$$g_{0c} = g_{c\ m+n} = r_{m,n}$$
 for each $c = 1, \dots, m+n-1$ $g_{0\ m+n} = s_{m,n}$ $g_{c\ c+1} = t_{m,n}$ for each $c = 1, \dots, m+n-2$ $g_{cd} = u_{m,n}$ for each $c, d = 1, \dots, m+n-1$ and $d \neq c+1$.

Furthermore, if m > 1 and n > 1

$$r_{m,n} = \binom{m+n-2}{n-1} + 2\binom{m+n-2}{n} + 2\binom{m+n-2}{n-2}$$

and

$$\begin{split} r_{m,n} = & r_{m-1,n} + r_{m,n-1} \\ s_{m,n} = & s_{m-1,n} + s_{m,n-1} \\ t_{m,n} = & t_{m-1,n} + t_{m,n-1} \\ u_{m,n} = & u_{m-1,n} + u_{m,n-1} \quad (\text{if } m > 2 \quad \text{or } n > 2) \end{split}$$

with $t_{m,n} \le u_{m,n} \le r_{m,n} \le s_{m,n}$, for each $\{m,n\} \ne \{1,2\}$.

Proof. If $c, d \neq m+n-1$ or $c, d \in \{m+n-2, m+n-1\}$, it follows easily by induction on m and n, and making use of equalities 1) - 3) and 5). An easy calculation shows that $r_{m,n} = r_{m-1,n} + r_{m,n-1}$. Furthermore, it is easy to see that, for each $c \neq m+n-2$, we have:

$$\alpha_{m-1,n}^c = \alpha_{m-2,n}^c + \alpha_{m-1,n-1}^c \text{ and } \beta_{m,n-1}^c = \beta_{m,n-2}^c + \beta_{m-1,n-1}^c.$$

Therefore, by applying induction to equality 4), we complete the proof. $\hfill\Box$

Let us consider now a cyclic permutation $\varepsilon = (\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{m+n})$ of Δ_{m+n} . We can always suppose that $\varepsilon_{m+n} = m+n$. It is clear, by formula (*), that for an ε corresponding to a surface F_{ε} of minimal genus for $\Gamma^{(m,n)}$, the sum $\sum_{i \in \mathbb{Z}_{m+n}} g_{\varepsilon_i \varepsilon_{i+1}}$ must be maximal.

genus for $\Gamma^{(m,n)}$, the sum $\sum_{i\in\mathbb{Z}_{m+n}}g_{\varepsilon_{i}\varepsilon_{i+1}}$ must be maximal. First note that, by Proposition 2, g_{i} $_{i+1}\leq g_{ij}$ for each $i,j\neq 0,m+n$ and $i\neq m+n-1$.

Therefore it is sufficient to consider permutations which have all pairs $\varepsilon_i, \varepsilon_{i+1}$ (with $\varepsilon_i, \varepsilon_{i+1} \notin \{0, m+n\}$) made by non-consecutive numbers (i.e. $\varepsilon_{i+1} \neq \varepsilon_i + 1$ and conversely). There are essentially two types of

such permutations:

$$\varepsilon^{(1)} = (\varepsilon_0, \varepsilon_1, \varepsilon_2, \dots, \varepsilon_{k-1}, 0, \varepsilon_{k+1}, \dots, \varepsilon_{m+n-1}, m+n)$$
if 0 is not "near" $(m+n)$

$$\varepsilon^{(2)} = (0, \varepsilon_1, \varepsilon_2, \dots, \varepsilon_{m+n-2}, \varepsilon_{m+n-1}, m+n)$$
 if 0 is "near" $(m+n)$

where all pairs $\varepsilon_i, \varepsilon_{i+1}$ are non-consecutive numbers.

If m + n > 4 we can always build such permutations in the following way:

- $\varepsilon^{(1)}$: if (m+n) is even (resp. odd) put all even (resp. odd) numbers after 0 and all odd (resp. even) before 0;
- $\varepsilon^{(2)}$: if (m+n) is even (resp. odd) put first all the odd (resp. even) numbers and then the even (resp. odd) ones, all in increasing order.

From now on we suppose m+n>4. Let us compute $\sum_{i\in\mathbb{Z}_{m+n}}g_{\varepsilon_i\varepsilon_{i+1}}$ for $\varepsilon^{(1)}$ and $\varepsilon^{(2)}$:

$$\varepsilon^{(1)} : g_{\varepsilon_0 \varepsilon_1} + \dots + g_{\varepsilon_{k-2} \varepsilon_{k-1}} + g_{\varepsilon_{k-1} 0} + g_{0 \varepsilon_{k+1}} + \dots + g_{\varepsilon_{m+n-1}m+n} + g_{m+n \varepsilon_0}$$

$$= (k-1)u_{m,n} + r_{m,n} + r_{m,n} + (m+n-k-2)u_{m,n} + r_{m,n} + r_{m,n}
= 4r_{m,n} + (m+n-3)u_{m,n}$$

$$\varepsilon^{(2)} : g_{0 \varepsilon_1} + g_{\varepsilon_1 \varepsilon_2} + \dots + g_{\varepsilon_{m+n-2} \varepsilon_{m+n-1}} + g_{\varepsilon_{m+n-1}m+n} + g_{m+n 0}$$

$$= r_{m,n} + (m+n-2)u_{m,n} + r_{m,n} + s_{m,n}$$

$$= 2r_{m,n} + s_{m,n} + (m+n-2)u_{m,n}.$$

It is easy to see, by using induction, that $2r_{m,n} = s_{m,n} + t_{m,n}$. Since $t_{m,n} \leq u_{m,n}$ we have $2r_{m,n} \leq s_{m,n} + u_{m,n}$.

Comparing the above inequalities with the formulas just found, we have:

$$\sum_{i\in\mathbb{Z}_{m+n}}g_{\varepsilon_i^{(1)}\varepsilon_{i+1}^{(1)}}\leq \sum_{i\in\mathbb{Z}_{m+n}}g_{\varepsilon_i^{(2)}\varepsilon_{i+1}^{(2)}}.$$

Hence, by applying formula (*) to $\Gamma^{(m,n)}$ and $\varepsilon^{(2)}$, we can state the following result for the genus of the "product" graphs:

PROPOSITION 3. For each m, n > 0, m + n > 4, we have:

$$\rho(\Gamma^{(m,n)}) = 1 - r_{m,n} - \frac{1}{2}s_{m,n} - \frac{1}{2}(m+n-2)u_{m,n} + (m+n-1)\binom{m+n}{n}.$$

REMARK 2. If m+n=4, the only interesting case for the genus is for m=n=2 (since all $\Gamma^{(1,n)}$ have genus 1 (see [7])). We can't find a permutation of type $\varepsilon^{(2)}$ for Δ_4 , since we always have at least two consecutive numbers, therefore we must compare the sum of the $g_{\varepsilon_i\varepsilon_{i+1}}$'s for the two permutations: (3,1,0,2,4) and (0,1,3,2,4). The calculation shows that both permutations are minimal and the genus of $\Gamma^{(2,2)}$ turns out to be 4. Actually this is the regular genus of $\mathbb{S}^2 \times \mathbb{S}^2$, as proved in [7].

Let us consider some particular cases:

Proposition 4. For each $n \ge 3$, $\rho(\Gamma^{(2,n)}) = n^2 - 1$.

Proof.

$$r_{2,n} = 2n - 1 + r_{2,n-1}$$

$$s_{2,n} = 2n + s_{2,n-1}$$

$$t_{2,n} = 2(n-1) + t_{2,n-1}$$

$$u_{2,n} = 2(n-1) + u_{2,n-1}$$

Moreover $t_{2,n}=s_{2,n-1}$ for each $n\geq 1$. In fact $t_{2,2}=s_{2,1}=4$ (see figure 3) and supposing that $t_{2,n-1}=s_{2,n-2}$, it follows:

$$t_{2,n} = 2(n-1) + t_{2,n-1} = 2(n-1) + s_{2,n-2} = s_{1,n-1} + s_{2,n-2} = s_{2,n-1}$$

Similar calculations give: $r_{2,n} = n + s_{2,n-1}$ and $u_{2,n} = 2 + s_{2,n-1}$. Furthermore:

$$s_{2,n} = 2n + s_{2,n-1} = 2n + 2(n-1) + s_{2,n-2}$$

$$= \dots = 2n + 2(n-1) + 2(n-2) + \dots + 4 + 4$$

$$= 2(n + (n-1) + (n-2) + \dots + 2 + 1) - 2 + 4 = n(n+1) + 2.$$

Applying the equalities above, we have:

$$r_{2,n} = n + n(n-1) + 2 = n^2 + 2$$

 $u_{2,n} = 2 + n(n-1) + 2 = n^2 - n + 4.$

Suppose now n>2 and compute the genus of $\Gamma^{(2,n)}$ using Proposition 3.

$$\rho(\Gamma^{(2,n)}) = 1 - r_{2,n} - \frac{1}{2}s_{2,n} - \frac{1}{2}nu_{2,n} + (n+1)\binom{n+2}{n}$$

$$= 1 - n^2 - 2 - \frac{1}{2}(n(n+1) + 2) - \frac{1}{2}n(n^2 - n + 4)$$

$$+ \frac{1}{2}(n+1)^2(n+2) = n^2 - 1.$$

As a direct consequence of the formula above, we have

COROLLARY 4. For each $n \ge 3$, $\mathcal{G}(\mathbb{S}^2 \times \mathbb{S}^n) \le n^2 - 1$.

REMARK 3. If n=3 the statement of Corollary 4 is actually an equality, as proved in [1, Corollary I].

Proposition 4 and Corollary 4, together with Remarks 2 and 3, suggest the following:

Conjecture. For each $n \geq 3$, $\mathcal{G}(\mathbb{S}^2 \times \mathbb{S}^n) = n^2 - 1$.

Proposition 5. For each $n \ge 1$, $\rho(\Gamma^{(3,n)}) = \frac{2}{3}n^3 + n^2 - \frac{2}{3}n$.

Proof.

$$r_{3,n} = r_{2,n} + r_{2,n-1} + r_{2,n-2} + \dots + r_{2,2} + r_{3,1}$$

$$= (n^2 + 2) + ((n - 1)^2 + 2) + \dots + (4 + 2) + 5$$

$$= \sum_{i=1}^{n} i^2 + 2n + 2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{13}{6}n + 2$$

$$s_{3,n} = (n(n+1) + 2) + ((n-1)n + 2) + \dots + (6 + 2) + 6$$

$$= \sum_{i=1}^{n} i(i+1) + 2n + 2$$

$$= \frac{1}{3}n^3 + n^2 + \frac{8}{3}n + 2$$

$$u_{3,n} = (n^2 - n + 4) + ((n-1)^2 - (n-1) + 4) + \dots + (4 - 2 + 4) + 4$$

$$= \sum_{i=1}^{n} i^2 - \sum_{i=1}^{n} i + 4n$$

$$= \frac{1}{3}n^3 + \frac{11}{3}n$$

The result follows directly from Proposition 3.

Hence we have the following:

COROLLARY 5. For each $n \geq 3$, $\mathcal{G}(\mathbb{S}^3 \times \mathbb{S}^n) \leq \frac{2}{3}n^3 + n^2 - \frac{2}{3}n^3$

Remark 4. Again by [1, Corollary 1], the statement of Corollary 5 is an equality for n = 2.

References

- [1] M. R. Casali and C. Gagliardi, Classifying PL 5-manifolds up to regular genus seven, Proc. Amer. Math. Soc. 120 (1994), no. 1, 275-283.
- [2] S. Eilemberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
- [3] M. Ferri, Una rappresentazione delle n-varietà topologiche triangolabili mediante grafi (n + 1)-colorati, Boll. Unione Mat. Ital. 13-B (1976), 250-260.
- [4] M. Ferri, C. Gagliardi and L. Grasselli, A graph-theoretical representation of PL-manifolds A survey on crystallizations, Aequationes Math. 31 (1986), 121-141.
- [5] C. Gagliardi, Regular imbeddings of edge-coloured graphs, Geom. Dedicata 11 (1981), 397-414.
- [6] ______, Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81 (1981), 473–481.
- [7] C. Gagliardi and L. Grasselli, Representing products of polyhedra by products of edge-coloured graphs, J. Graph Theory 17 (1993), no. 5, 549-579.
- [8] M. Pezzana, Sulla struttura topologica delle varietà compatte, Atti Sem. Mat. Fis. Univ. Modena 23 (1974), 269-277.
- [9] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

Dipartimento di Matematica Pura ed Applicata Università di Modena e Reggio Emilia Via Campi 213 B I-41100 MODENA, Italy

E-mail: cristofori.paola@unimo.it