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ON THE GENUS OF §™ x §"

Paora CRISTOFORI

ABSTRACT. By using a recursive algorithm, we construct edge-
coloured graphs representing products of spheres and consequently
we give upper bounds for the regular genus of S™ x S§", for each
m,n > 0.

1. Introduction

Throughout this paper we shall work in the PL category. In the
following the term “manifold” will denote a closed, connected one and
“graph” a finite connected multigraph (i.e. without loops).

An (n + 1)-coloured graph (without boundary) is a pair (T',y), where
I' = (V(I'), E(T")) is a graph, regular of degree n + 1, and 7 : E(T') —
A, = {0,1,...,n} a map such that y(e) # v(f), for each pair e, f of
adjacent edges of I'. For each B C A,, the B-residues of (I',) are
the connected components of the graph I'g = (V(T'),y~1(B)). For each
c € Ay, we set ¢ = Ap \ {c} and we shall write I's instead of 'y, 43

An (n+ 1)-coloured graph is called contracted if and only if for every
c € A, T's is connected.

From now on we often drop the edge-colorations, writing T" instead
of (T',7).

Let K be an n-dimensional pseudocomplex, the disjoint star std(s, K)
of a simplex s in K is the disjoint union of the n-simplexes containing
s, with re-identification of the (n — 1)-simplexes containing s and of all
their faces; the disjoint link of s in K is the complex lkd(s, K) = {t €
std(s, K)|s Nt = 0}.
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A coloured n-complex is a homogeneous pseudocomplex K together
with a “coloration” of its vertices by A,, which is injective on every
simplex.

Given an (n + 1)-coloured graph T', we can construct a coloured n-
complex K(T') in the following way:

- take an n-simplex s(v) for each v € V(I") and label its vertices by
Ap;

- for each ¢ € A, and each pair v,w of c-adjacent vertices in I,
identify the (n — 1)-faces of s(v) and s(w) opposite to the vertices
labelled ¢, so that equally labelled vertices coincide.

The above construction can be easily reversed in order to associate an
(n + 1)-coloured graph I'(K) to each coloured n-complex K. There-
fore these constructions give rise to a correspondence between (n + 1)-
coloured graphs and coloured n-complexes.

It is easy to see that ['(K(T')) = T'; conversely K(I'(K)) = K if and
only if the disjoint star of every simplex in K is strongly connected. In
this case |K| is said to be represented by T'.

A contracted (n + 1)-coloured graph representing a manifold M is
called a crystallization of M.

By results in [8] and [3], every n-manifold admits crystallizations.

The above definitions, together with a general survey on edge-colour-
ed graphs, can be found in [4].

Given an (n + 1)-coloured graph I', each cyclic permutation ¢ =

(€0,€1,.-.,€n) of A, defines a particular imbedding (called regular) of
T into a closed surface F¢, whose Euler characteristic is (see [5] and [6]):
1
(*) X(Fe) = Z gEiEi+1(]‘—‘) + 5(1 - n)p(F)
iGZn+1

where g;;(I") is the number of connected components of I';; and p(T') is
the number of vertices of I'.

F. is orientable or non-orientable according to I' being bipartite or
not.

The regular genus p(I") of T is defined as:

p(T") = min{p:(T)|e is a cyclic permutation of A,}

where pe(I') denotes the genus of F.
Given an n-manifold M the regular genus of M is the minimum
among the regular genera of the graphs representing M.
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In the following we shall describe a construction, introduced in [7],
which, starting from two coloured graphs representing two polyhedra,
produces a coloured graph representing their product.

If we apply this construction to the product of spheres, we get sev-
eral simplifications which, given m,n > 0, allow us to build, by inductive
steps, a graph representing S” x S™. Furthermore we obtain some rela-
tions among the numbers of coloured cycles in the resulting graphs, by
which we can find a “minimal” permutation (i.e. a cyclic permutation
defining a regular imbedding of minimal genus) and we can compute the
genera of these graphs in a recursive way. We also give direct formulas
in the particular cases of m = 2, 3.

2. Representing products by edge-coloured graphs

We briefly outline the construction introduced in [7], to obtain “prod-
ucts” of coloured graphs.

Let ¢™ (resp. 7") be an m-dimensional (resp. n-dimensional) sim-
plex, whose vertices are labelled by {vg,...,vn} (resp. by {wo,...,
wp }); then the set of the vertices of the product ball complex ¢™ x 7"
is {(vr, ws)|r € A, s € An}.

Let A(o™,7") (m,n > 0) be the matrix with (m + n + 1) columns,
whose (m: ™) rows are sequences of elements of

{vo, ..., vm} x {wo,...,wy}

of the following type:

(’Um, wn) = (’vrm’ wsn)’ ) (UTo:wso) = (UO’ wO)

O0<Sro<m < <rm=m,0<s <1<~ <sp=n.

These elements can be thought as “words” of length (m-+n+1) in the
alphabet {vp,...,vm} x {wo,...,w,}, lexicographically ordered, where
each “letter” is obtained by decreasing by one, at each step, the index
of one and only one of the two components v, and w;.

The sequences represent the (m + n + 1) vertices of {vp,...,um} X
{wo, ..., wn} which span the maximal simplexes of a simplicial triangu-
lation 6™ B 7™ of 6™ x 7" (see [2], [9]).
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The matrix A(c™,7™) can be constructed according to the following
scheme:
('Um» wn)
B=A(c" )
A(c™ ") =
C=A(0™, ™1
(Vm, wn)

where A(c™1, ") (resp. A(c™,7"!) ) represents the simplicial com-
plex 0™ 1 ® 7™ (resp. ¢™ W 7"~1), obtained by deleting the vertex vy,
(resp. wy) from ¢™ (resp. 7") and has (™**71) (resp. (™"71)) rows.

Let I' (resp. I') be an (m + 1)-coloured (resp. (n + 1)-coloured)
graph, an (m+n+1)-coloured graph IR representing | K (I') x K (I')|
can be obtained in the following way:

- for each pair (', B3;) of vertices of V(I') x V(I'"), consider the
("™+™) vertices éz(k) which are in one-to-one correspondence with
the rows of the matrix A(o7", 7)), where o]" (resp. 77) is the m-
simplex (resp. n-simplex) of K(I") (resp. of K(I')) represented
by o (resp. by 8;);

- set V(D'RI) = {6i(k)i = 1,..., #V(I["),5 = 1,..., #V(I"), k=
..., (m:n)};

- for each vertex 5;(/6) eVIRT") i=1,...,#V(I),j=1,...,
#V({I"),k=1,..., (m; ™)), let us denote by wy, its corresponding
row of A(of",77"); then:

a) for each d € Ap4p, delete from wy the unique element (v, ws)
such that » + s = d, yielding a sequence wk(cf). If there exists
another row wp, of A(of",77') such that wi(d) = wy(d), then the
way the matrix is constructed guarantees that it is unique; in this
case join 5;- (k) and 5;(h) by a d-coloured edge;

b) if v, (resp. ws) appears exactly once in a pair (v,,wy) (resp.
(vpr, wg)) of wy for some r € A, (resp. for some s € A,), let o
(resp. [:) be the vertex of I’ (resp. of I'') r-adjacent with o
(resp. s-adjacent with ;). Join Jﬁ(k) and &%(k) (resp. &%(k) and
§i(k)) by a d-coloured edge, with d = r + s’ (resp. d =’ + s).

In the particular case of products of spheres, we can simplify the
above procedure by using the standard (p + 1)-coloured graph I'®) rep-
resenting SP and having two vertices joined by p + 1 edges.

Starting from '™ and '™, we construct T™ R T(™ a5 follows:

- #V(p(m) = p(n)) = 4("‘:");
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- if wy(d) = wy(d), join 8i(k) and 6i(h) (5,5 =1,2) by a d-coloured
edge;

- if v, (resp. w,) appears exactly once in a pair (v,,wy) (resp.
(vr, ws)) of wg, join &1 (k) with 62(k) (resp. with 63(k)) and 62(k)
with 63(k) (resp. with 62(k)) by a d-coloured edge, with d = r+ s’
(resp. d = 1"+ s).

It is clear that the structure of this “product” graph depends only on
the structure of the matrix A (¢™, 7™); moreover, the inductive construc-
tion of A(c™,7") allows us to describe a method to build '™ R (™),
starting from T~V KT and T RIT"Y | without further reference
to A(o™,7"). Construct an (m+n-+1)-coloured graph I'™") as follows:

- V(@imn)) = y(@m=D g M) u V(I RTC-D) = {6i(k)]i,j =
L2 k=1..., (™ uik)ii=12 k=1,..., (™"}

-foreach k=1,..., (mt?—l) (resp. k=1,..., (mtz_l)) join 63 (k)
with 62(k) (resp. &}(k) with 83(k)) and &2(k) with d3(k) (resp.
82(k) with 62(k)) by an (m + n)-coloured edge;

- for each k = (™77 +1,..., (™) + (™2 join d%(k) and

g;(k — (™) (4,5 =1, 2) by an (m +n — 1)-coloured edge; for
the remaining vertices of I'™") re-establish the edges as they are
in ™= ® '™ and [™ QT"-D),

PROPOSITION 1. I'(mn) = 1(m) ® 1(n),

Proof. Note that, for each d # m+n—1, 1f two rows of the submatrix
B (resp. C) of A corresponding to A(c™1,7") (resp. A(c™,7" 1)),
say wy and wy, lead to equal sequences wy(d) and wy(d) in B (resp. in
C) they also lead to equal sequences in A; furthermore if v, or w, # wy
(resp. ws or vg # vpy,) appears once in a row of B (resp. of C), then
it appears once in the same row of A. Thus all d-coloured edges (d #
m+n—1) of r(m=1m) and 01 remain unchanged in T(™");

Furthermore, following the more detailed scheme below for the matrix
A(o™, ™), it is easy to see that:

(Um’wn) (Vm-1,wn) B'= (O'm ,’7’ ™) .
= A(o™ ) = - (Um-1,wn) B =A(c™ !, "1
A—A(U , T )_ . (UM7wn—1) C’ _A(O' ,Tn 1)

(Vm, wn)  (Um,wn-1) C" = A(c™, 77" 2)

a) wy (resp. vpm) appears once in all rows of the submatrix B’ (resp.
C’) corresponding to A(c™71 7771, but twice in all the corre-
sponding rows of A, i.e. all the (m + n — 1)-coloured edges of



412 Paola Cristofori

I'(m=1m) and T™"=1) joining the vertices corresponding to B’ and
C’ disappear in A,

b) each row of B’, with the element (v;,_1,wy) deleted, is equal to
a row of C’, with the element (vy,,w,—1) deleted, therefore the
corresponding vertices are joined by (m + n — 1)-coloured edges;

c) vm (resp. wy) appears once in the first (m"':_l) (resp. in the
last (m+£—1)) rows of A, therefore the corresponding vertices are
joined by (m + n)-coloured edges.

a

Using the above construction and starting from the (r + 2)-coloured
graphs ') and (> (# > 1), it is possible to build by successive steps,
the (m + n + 1)-coloured graph '™ for each m,n > 0.

REMARK 1. Note that all ™" have a double simmetry. In fact, for
each k=1,..., (m"'"), each edge between the vertices 61(k) and 6% (k)

(resp. g%(k) and g%(k)) has a corresponding edge, with the same colour,

between 63(k) and 83 (k) (resp. (?%Uc) and g%(k))

An easily implemented program allows us to build (™™ for each
m,n > 0.

As an example, figure 1 shows I'®3), Since its number of vertices is
too big (= 80) to fit the picture, we only drew part of the graph, which,
because of the simmetries, is sufficient to represent the whole of it.

3. The genus of I'™")

Let us denote by g.q, where ¢,d € Ay yn (resp. geq where ¢,d €
Apm+n-1) (resp. geq where c¢,d € Apipn_1) the number of connected
components of T’ ggb’n) (resp. T gjn_l’")) (resp. F((:;n’n_l)). Moreover, let
ar,, (resp. B5,,) (¢ € Apyn-2) denote the number of {c,m + n}-
residues of length two of ™™ | whose vertices correspond to rows of
the submatrix A(c™, 7" 1) (resp. A(c™71,7)) of A(c™,7") (see the

scheme above).
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LEMMA 2. We have the following equalities:
9ed = Jed + Geq  for each c,d € Apyyn—2

e m+n = Ge m+n—1 T .60 m+n—1 for eachc € Apyn—2
m+n—2 m4+n—2 m+n—2
Im+4n—-1 m+n = +2 +2
n—1 n n—2
_ = 1
9e m+n—1 = Ge m+n—1 + Jc m4n—-1 — §(afn—1,n + /Bfn,n—l)

for each ¢ € Apyin—3

m+n—2
n—1 '

Im+n—2 m4n—1 = Im+n—2 m+n—1 + Im4n—2 mtn—1 — (

Proof. By the construction of section 2 it is clear that all c-coloured
edges (¢ € Ap4n—2) of '(mn) are the same as in I'm~1m) apd rimn-1)
while the (m+n)-coloured edges in T™") take the places of the (m+n—
1)-coloured edges of rm=1n) and 1mn=1). therefore we obtain equalities
1) and 2).

To prove the third equality, recall the scheme for A(c™,7™) in the
proof of Proposition 1.

Note that, for each row wy of B” (resp. C”), we have two {m +
n — 1,m + n}-residues, whose sets of vertices are {61(k),63(k)} and
{83(k), 8(K)} (resp. {51(k), 53(k)} and {52(k), 32(k)}).

Furthermore, for each k = (mt?—z) +1,..., (m+:,—2) + (™ 2), we
have only one {m+n~—1, m-+n}-residue, whose set of vertices is {8}(k),
53(k), 83(k), 83 (k), 61 (), 64 (), 63 (), 63 (R)}, where h = k—("*117?) (see
figure 2). Equality (3) follows.

Let us now consider the {¢,m + n — 1}-residues of r(m=1n) and
r(mn=1) (¢ € Ayin_2); note that those having all vertices correspond-
ing to rows of B” or C” don’t change in T'("7).

For ¢ # m + n — 2, we have the following situations:

(i) for every pair of length two {c,m + n — 1}-residues of I'™~1n)
(resp. T'(mn=1)) corresponding to a row wy of B’ (resp. C’),
there exists exactly one {¢,m + n — 1}-residue of T(™7=1) (resp.
F(m’l’")) of length four, whose vertices correspond to the row wy,
of C/, with h = k — (™72 (resp. of B/ with h =k + (™"7?) )
and conversely;

(i) for every pair of length four {c,m 4 n — 1}-residues of I'™~1n),
whose sets of vertices are {3} (k), 8} (h)|i = 1,2} and {52(k), 62(h)i
= 1,2}, corresponding to the rows wy and wy of B', there exists



On the genus of S™ x §™ 415

exactly two {c, m+n—1}-residues of I™"~1) of length four, whose
sets of vertices are {8¢(k’),8%(h)]i = 1,2} and {52(k’) Si(R)]i =
1,2}, corresponding to the rows wy and wp of C’, with k' =
k— (m+,: _2) and b/ = h — (m+77_2) and conversely.

These are the only {c, m +n — 1}-residues which change in I'™™), It
is easy to see that in case (ii) the number of the residues doesn’t change
and in case (i) the three residues produce two of length four in T(™™),

Finally, let us consider the case ¢ = m +n — 2. The only {m +n —
2,m + n — 1}-residues changing in I(mn)  are as follows:

(ii) for each k = ("™*"7?) + 1,..., (™) + (™77 (resp. k =

n n n—1

iy N4, ., (™77%)), there is exactly one {m +n — 2,m +
n—1}-residue of length eight in T~ (resp. in T(™"=1) whose
set of vertices is {8%(k), 85()i,j = 1,2}, h = k — (™+"=3) (resp.
{5’( ), 0k (R)li, 5 = 1,2}, h = k+ (™0 %)), to which corresponds
a pair of length two {m + n — 2,m + n — 1}-residues of I'(™mn—1)
(resp. of D™=1m)) whose sets of vertices are {31(k'), 63(K')} and
{03(K'), 83(K')}, with k' = k — (™72} (resp. {5}(K'),33(K')} and
{82(K"),63(K")}, with k' = k + (™*"72)).

Since, as can be directly seen, every three residues which correspond,

yield two of length six in I'™") equality 5) easily follows. O

Let us now consider the graphs I'L7) (n=1,2,...), which are shown
in figure 3.
An easy calculation gives:

gor=g¢gp2="""=gm=2n—1
90n+1=2n
Jintl =9 nyl1 ="""=Gpnt1 =2n—1

9ged=2(n—1) foreache=1,...,m—1 and foreachd=1,.

The following result guarantees that similar relations hold among the
number of residues g.q of T(™™ (m,n > 0):

PROPOSITION 2. For each m,n > 0, there exist constants Tm n, Smn,
tmny Umn Such that

90c = ge m4n =Tmn foreachc=1,.... m+n—1

90 m4+n = Smn
Gectl =tmm foreachc=1,....m+n—2
9ed = Umn foreachc,d=1,...,m+n—1 and d#c+1.
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Furthermore, if m > 1 and n > 1
m+n—2 m+n-—2 m+n—2
Tmn = + 2 +2
n—1 ) n—2

Tmn =Tm-1n t Tmn—1

and

Sm,;n =Sm—1,n T Sm,n—~1
tm,'n, :tm—l,n + tm,n—l

With tmn < Umpn < Tman < Smyn, for each {m,n} # {1,2}.

Proof. If e,d # m+n—-1ored € {m+n—-2,m+n—1}, it
follows easily by induction on m and n, and making use of equalities 1)
- 3) and 5). An easy calculation shows that rmn = "m—1n + 'mn-1-
Furthermore, it is easy to see that, for each ¢ # m + n — 2, we have:

c — C c c _ nc C
am—l,n - am—2,n + am—l,n—l and ﬂm,n—l - ﬂm,n—Q + /Bm-l,n——l"
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Figure 3

Therefore, by applying induction to equality 4), we complete the
proof. O

Let us consider now a cyclic permutation € = (g9,€1,.-.,Em+n) Of
Apm+n- We can always suppose that epn = m + n. It is clear, by
formula (*), that for an e corresponding to a surface F. of minimal
genus for T™™ | the sum Y i€Zomsn Jeiciy: MUSt be maximal.

First note that, by Proposition 2, g; ;41 < g;; for eachi,j # 0,m+n
and i#Fm+n-—1.

Therefore it is sufficient to consider permutations which have all pairs
€i,&i+1 (with €;,€;41 ¢ {0, m + n}) made by non-consecutive numbers
(i.e. €i+1 # €; + 1 and conversely). There are essentially two types of
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such permutations:
1
E( ) = (80761782’ s ,Ek——1707€k+17 <oy Emtn-1,M + n)
if 0 is not “near” (m +n)
e@ — (0,€1,€2,- -+ Emtn—2,Em4n—1,m+n) if 0 is “near” (m + n)

where all pairs ¢;, ;41 are non-consecutive numbers.
If m 4+ n > 4 we can always build such permutations in the following

way:

e if (m + n) is even (resp. odd) put all even (resp. odd) numbers
after 0 and all odd (resp. even) before 0;

€@ if (m + n) is even (resp. odd) put first all the odd (resp. even)
numbers and then the even (resp. odd) ones, all in increasing
order.

From now on we suppose m+n > 4. Let us compute Ez‘ezm+n Geiciin
for e and @ :
eW Geoer T Gep_pep1 T Ger10 + G0ep g T
+ Germino1m+n T Imineo
= (k - 1)um,n + Tmn + Tman + (m +n—k-— 2)'Ufm,'n, +Tmn + mn

=drmn+(Mm+n—3)unn

8(2) 290e; t 9e1e0 + 0 F Geman_semin—1 T Yemin_1m+n T 9m4n 0
= Tmn + (m +n - 2)'U/m,n + Tmn + Smn
= 2mmn + Sman + (M + 1 = 2)up n.
It is easy to see, by using induction, that 2ry, , = $;mn + tmn. Since

tmn < Umn We have 2rp, n < Spp + U n

Comparing the above inequalities with the formulas just found, we
have:
D e S D go;
"'EZTVH-H 1€Zm+n

Hence, by applying formula (*) to T™™ and £, we can state the
following result for the genus of the “product” graphs:

ProrosiTION 3. For each m,n >0, m+n > 4, we have:

1 1
Ty =1 —p, o — 55mn ~ §(m+n—2)um,n+ (m+n-1) (m: n)



On the genus of ™ x S™ 419

REMARK 2. If m + n = 4, the only interesting case for the genus is
for m = n = 2 (since all T%™ have genus 1 (see [7])). We can’t find
a permutation of type €2 for A4, since we always have at least two
consecutive numbers, therefore we must compare the sum of the g, ,
’s for the two permutations: (3,1,0,2,4) and (0,1,3,2,4). The calculation
shows that both permutations are minimal and the genus of I'®2) turns
out to be 4. Actually this is the regular genus of S? x S2, as proved in
[7]-

Let us consider some particular cases:

PROPOSITION 4. For eachn >3, p(T@m) =n2 1.

Proof.
Ton =2n— 141201

S2.n =2Nn + S2.n—1
ton =2(n — 1) +t2n1
Ugp =2(n — 1) + Ug p—1.

Moreover t3, = sz pn—1 for each n > 1. In fact o2 = s21 = 4 (see
figure 3) and supposing that t3n,—1 = s2.n—2, it follows:

ton =2(n—1)+tan_1=2(n—1)+ s2n—2 = S1n-1+ S2n-2 = S2n—1
Similar calculations give: r2, =n+ s2,—1 and Uz, =2+ S2n—1.
Furthermore:

Son=2n+sap-1=2n+2(n—1)+ s2.n—2
=.=2+2(n—-1)+2n—-2)+---+4+4
=2n+n-1)+n-2)+--+24+1)—2+4=n(n+1)+2.

Applying the equalities above, we have:
Ton = n+n(n——l)+2=n2+2
Upn=2+nn—1)+2=n2—n+4

Suppose now n > 2 and compute the genus of I'>™ using Proposition

3.
1 1 n+2
=Son — MUz, + (N + 1)( " )

]_—‘(27”') =1- n—
p( ) X 5

1 1
= 1—n2—2—5(n(n+1)+2)—§n(n2—n+4)

1
+ E(n—l—l)z(n—i—?) =n? -1
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As a direct consequence of the formula above, we have
COROLLARY 4. For eachn >3, G(S* xS") <n?% 1.

REMARK 3. If n = 3 the statement of Corollary 4 is actually an
equality, as proved in [1, Corollary IJ.

Proposition 4 and Corollary 4, together with Remarks 2 and 3, sug-
gest the following:

CONJECTURE. For each n >3, G(S? x S") =n? - 1.
PROPOSITION 5. For eachn > 1, p(T3™) = 2n3 +n? — 2n.

Proof.
r3n =T2n+T2n-1+7"2n-—2+ -+7r22+731
=n2+2)+((n-1)%4+2)+ - +(4+2)+5

n

1 1 13
= P+ +2=-nd+-n’+—n+2
P 3 2 6

s3n=(Mn+1)+2)+((n=1)n+2)+---+(6+2)+6
=) i(i+1)+2n+2
=1
1 8
= §n3+n2+§n+2
Uz =2 —n+4)+((n—-1)2-(n-1)+4)+ -+ (4—-2+4)+4

= iiz—ii+4n
i=1 i=1

13, 11
5 —=n
3 3

The result follows directly from Proposition 3. O
Hence we have the following:
COROLLARY 5. For each n > 3, Q(S3 x §™) < %n?’ +n? - %n

REMARK 4. Again by [1, Corollary 1], the statement of Corollary 5
is an equality for n = 2.
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