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Abstract

We propose some properties of fuzzy multivariate analysis of variance by fuzzy vector operation with agreement index. We deals
fuzzy null hypotheses and fuzzy alternative hypothesis and define the agreement index for the grades of the judgements that the
hypothesis is rejection or acceptance. Finally, we provide an example to evaluate the judgements.
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1. Introduction

Our primary propose of statistical test is fuzzy multivariate
analysis of variance.

The generalization for simple hypotheses is given by
Watanabe and Imaizumi([8]). In Gizegorzewski([2]), the fuzzy
hypotheses testing was considered that the data(observation)
are vague data and the hypotheses are fuzzy. Also, Kang,
Choi and Han([3],[4],[5]) was suggested some estimations of
fuzzy variance components for fixed effect modeled with
fuzzy data.

We propose some properties of fuzzy multivariate analysis
of varianceMANOVA) by fuzzy vector operation with
agreement index for the fuzzy hypotheses and provide an
example to evaluate the judgements with fuzzy data.

2. Some distance of fuzzy number

We denote by fuzzy number in &%,
A=(ay, ay, ', a,) (2.1)

where gq,(i=1,-+,p) are projection of A to axis

X,(i=1,:, p), fuzzy number in R, respectively.

Definition 2.1. The §—Ilevel set of fuzzy number in &5, is
define by

[A]°= [(x,,---,x,,)ER": (xy, ., x,)€ ,Iill[a"]&} (2.2)

where notation ] is the Cartesian product of sets.

Definition 2.2. Let A and B in &}, for all 6=(0,1],
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A=B & [A]°=[B)° (2.3)

[A%,B1*= I [axb)° 2.4)

. C . L
where *, is operation in &% and * is operation in e&,.

Let If[o[a,-]a, 0<é<1, be a given family of nonempty

areas.
It
lIiIO[a,-]'S?C t}jo[a,-]al for 0<8,<8x1 (2.5)
and
H Se )
I, tim{a]”= T fa] 26)
then the family

Iﬁ[o[ai]", 0<8<1 represents the ¢—level sets of a fuzzy

number Aceh, where (§,) is a nondecreasing sequence

converging to 8=(0,1].
Conversely, if ]f[o[a,»]‘s, 0<8<1 are the &—level sets of

a fuzzy number in R”, then conditions (2.5) and (2.6) are
true.

We define the metric d,, on &f.

Definition 2.3. Let A, Be &3,
d.(A, B) =sup{d([A]°, [ B]°): 6=(0, 11}

=Su1>{a'y( lljl[a,-]a, Iell[bi]"): 56(0,1]}

1=

— sl $5 du(Ta)’, (612 0=0,11) @7

where dy is Hausdorff distance.
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3. Fuzzy statistical test

Let X be a random sample fuzzy vector from some sample
space 2 and {P,, 6=} be a family of fuzzy probability
(distributions, where @ is a parameter vector and @ is a
parameter space. For each ¢=®, we can consider a family of
hypotheses { (H,(¢), H,($))|¢=@} and introduce the fuzzy
hypothesis as a fuzzy subset.

Definition 3.1. The fuzzy hypothesis H, is a fuzzy subset
of { (Hy(¢), H,($))|¢= @} with fuzzy hypothesis membership
function x, (H,(¢), H,(¢)).

We set whit simplicity

1 D =xa(Hy($), H($)) (3.1

and assume normality and convexity.
The fuzzy null hypothesis can be defined as follows.

Definition 3.2. The fuzzy null hypothesis H , , is a fuzzy
subset of @ with a membership function x,(¢). The fuzzy
alternative hypothesis H,, is a fuzzy subset of @ defined
by the equation

Hy = Hg*(MIH{ aekag,ua( (3.2)

{dxThH 20} Ok

where &( -) stands for the fuzzy set whose membership
function of the set.

Definition 3.3. If we consider upper bound function T
then we present this function by a fuzzy subset 7TCR. Let us
consider number a fuzzy number KCR, which we call the
agreement index of K whit regard to 7, the ratio being
defined in the following way:

KK, T)=(area KN T)/(area T)=[0.1]. 3.3

Using membership function K(a,¢) of critical region
where o is significance level, we also define the fuzzy
hypothesis membership function x, on {0,1} for

acceptance or rejection as follows.

Definition 3.4. If we have symmetric membership function
xr with fuzzy number statistics T=<min(/, #), c,
min(Z, ) >, then we define the real-valued function R, on

© as in Definition 3.1. The maximum grade membership
function of acceptance or rejection is

1£,(0) = sup farealxr(9) Nz k(4 4-)/ areaxr(P} 3.0
34

XR‘(I) =1- XR,(O)
Let R, denote the fuzzy subset of an entire set {0, 1}
defined by xp . since {0,1} corresponds {"accept”, "reject"},
the value XR,(l) and x,(0) are equal to the grades of the

judgements that the hypothesis is rejected or not rejected.
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Now, we show the multivariate statistical properties of our
testing method.

4. Fuzzy MANOVA

More then two populations need to be compared. The
random samples, collected from each of « populations are
arranged as

X, Xy Xy o Xy,
x=|Xz |=|Xa Xy - X, 4.1)
X, Xa Xao = X,
where X,=(%j, T, %) i=1,2,-,a, j=1,2,

-+, m; is fuzzy random vector.
We denote X ;=(%5, %5, -
with A=(a, a,, -+, a,) in &} as 2.1).
Fuzzy multivariete analysis of variance(MANOVA) model
for comparing  population mean vectors is given by

-, &5,)" by the fuzzy number

X,’jz /l@ a,'@ 5,*/;, = 1,2, e, a (42)
or
X 2y a; €41
X;= X |=1|# D% |p|cn
X Hy i Eiip
and j=1,2,:,n, where g; are independent N, (0, X)
variables.

Here the parameter vector . is an overall fuzzy
mean(level) and o, represents the ~th treatment fuzzy effect

a
with 21 n;a;="0.
&

The errors for the components of X, are correlated, but

the fuzzy variance-covariance matrix X is the same for the
populations.

A vector of observations may be decomposed as suggested
by the model.

Thus

X;= X®(X,0X)D(X,9X) (4.3)

where X is fuzzy observation vector, X is overall sample
fuzzy mean v.s. 2, (X,© X) is estimated treatment fuzzy
effect v.s. @, (X,;©X,) is fuzzy residual v.s. &

The decomposition in (4.3) leads to the multivariate analog
of the univariate sum of squares. First we note that the
cross-product can be written as

(X,;@TC)(X,-,-G—)?)’
=[(X; 0 XD (X0 D(X,0X)B(X.0X))

(4.4)

The sum of over ; of the middle two expressions is the



fuzzy zero matrix become 21 (X;© X )=0. Next, summing
=
the cross-product over 7 and ; yields

2 2,0 XNX0X) T

= S nX0X)(X,0X) ;B

1=

4.5)

® ¥ 3 X,OTNX0X) W

it's means that (Total sum of squares and cross product ) =
(trement(Between) sum of squares and cross product) +
(residual(Within) sum of squares and cross product).

The hypothesis of no treatment effects

(4.6)

Hf.(): alzazz’...,gaazo

is tested by considering the relative size of treatment and
residual fuzzy sums of squares and cross-product.

The degree of freedom correspond involving Wishart
densities.

One test of H,;:a;=a,~,
variances. We reject H,, if the ratio of generalized variance

,=a,~70 involves generalized

At 14

=B+ W 4

is too small. The quantity A" proposed originally by Wilks.
The exact distribution of A" can be derived for the special
cases of p=1, a=2 with

( Zn,;p~1 )( 1/—1:/1'

)~F<p,zn,.—p~1> (48)

Bartlett has shown that if H; is true and 3ln,=# is
large,

~(n—1-4252 g

2 (4.9)

has approximately a chi-square distribution with p(z—1)
degree of freedom. Consequently, for # large, we reject H,
at significance level g if

—(n—l~M)ln/1‘>x2(a;p(a—l)).

; 4.10)

5. An example

Suppose an additional variable is observed. Arranging the
observation pairs X, in rows, the random fuzzy number data

are
[ (8.9, 9.1)] [ (5.9, 6.1)] [ (8.9, 9 1)]
((_2(.)913612) 88,%3 (6.9,7.1)
=\ sl [ i)
(2.9, 3.1)] [ (0.9, 1.1)] [ (1.9, 2 1)]
(7.9,8.1) (8.9,9.1) (6.9,7.1)

Thus we have

Multivariate Analysis of Variance for Fuzzy Data

(71.17, 84.44)

= (—17.81, —6.43)
B ( (—17.81, —6.43) )

(43.97, 52.37)

W=( (7.04, 13.52) (—3.08,4.2) )
(—3.08,4.2) (19.44,29.12)

and

A w

=B w7 = (0-0149, 0.0509).

Since p=2 and g=2, an fuzzy test of H,;: o;>a,~0
versus H,,: at least one o,#0 is available. To carry out
the test, we compare the fuzzy statistic

1—\/T Zni—a—1 _
( Ve ) a—1 = (6.85, 14.36)

with a  percentage F— distribution
F(0.01;4,8)=17.01.
Finally, we have the rejection degree y, (1)=1—0.98 for

point of an

the hypothesis by agreement index in Fig 1. For §=1, the
F-test statistic is 8.19.

68 70 81
[Fig. 1]

14.3

Other hand, we consider symmetric F-test statistics

LR-fuzzy number for oo =0 by Definition 4.3 as

T'= (min(8.19—-6.85,14.36 - 8.19),8.19,
min(8.19—6.85,14.36 —8.19)>=<1.34 , 8.19, 1.34>

then we have the rejection degree xr(1)=1-0.936 by Fig
2.

Xr

6.85 7.01

7.51 9.53

[Fig. 2]
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