DOI QR코드

DOI QR Code

The Development of Fully Coupled SWAT-MODFLOW Model (I) Model Development

완전 연동형 SWAT-MODFLOW 결합모형 (I) 모형의 개발

  • 김남원 (한국건설기술연구원 수자원연구부) ;
  • 정일문 (한국건설기술연구원 수자원연구부) ;
  • 원유승 (한국건설기술연구원 수자원연구부)
  • Published : 2004.06.01

Abstract

In this study, the fully coupled SWAT-MODFLOW model is developed by using the type of embedment MODFLOW in SWAT. Since SWAT model has semi distributed features, its groundwater component can't consider distributed parameters such as hydraulic conductivity, storage coefficient and spatially variable natures such as distribution of groundwater heads and pumping rate and so forth. The main purpose of this study is to overcome these limitations. This linkage is completed considering the interaction between stream network and aquifer to reflect boundary flow. To correspond HRU in SWAT to grid in MODFLOW, HRU-GRID conversion tool using DEM is newly suggested. As groundwater recharge of MODFLOW can be estimated accurately by SWAT model, the reliability of groundwater discharge and total runoff of watershed could be greatly enhanced.

본 연구에서는 준 분포형 지표수 유출모형인 SWAT과 3차원 지하수 유동모형인 MODFLOW의 완전 연동형 결합모형을 독자적인 방식에 따라 개발했다. SWAT의 지하수 모형성분은 집중형이므로 분포형 매개변수와 변화하는 양수량, 지하수위의 변화 등을 고려하지 못하며 MODFLOW 모형은 주요 입력자료인 함양량의 정확한 산정이 어렵다는 한계를 안고 있다. 이를 극복하기 위해 준분포형 모형인 SWAT의 HRU를 분포형 모형인 MODFLOW의 격자로 대응시키기 위해 DEM을 이용한 HRU-GRID변환기법을 독자적으로 개발하였으며, 수문성분 교환은 지하수 함양량의 전달과정과 하천네트워크-대수층간의 상호작용을 고려하여 완성하였다 결합모형을 이용하면 지표수나 지하수 모형만으로는 해결되지 않는 하천-대수층간의 경계유량을 고려한 유출해석이 가능해짐으로써 지하수 유출량을 포함한 유역내 총 유출량의 신뢰성이 증대될 것으로 기대된다.

Keywords

References

  1. 건설교통부 (1999). 지표수-지하수 연계운영 시스템 개발, '98 건설기술연구개발 최종보고서 R&D/98-0005, 373p.
  2. 수자원의 지속적 확보 기술 개발 사업단 (2003) 지표수 수문성분 해석기술 개발 2차년도 요약보고서, 과제번호(2-2-1)-한국건설기술연구원, 100p.
  3. Arnold, J. G., P.M. Allen, and G. Bernhardt (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology. Vol. 142. pp.47-69 https://doi.org/10.1016/0022-1694(93)90004-S
  4. Arnold, J. G., J. R. Williams and D. R. Maidment (1995). Continuous-time water and sediment-routing model for large basin. Journal of Hydraulic Engineering. ASCE, Vol. 121. No. 2, pp. 171-183 https://doi.org/10.1061/(ASCE)0733-9496(1995)121:2(171)
  5. Danish Hydraulic Institute (1999). KIKE SHE Water Movement User Manual
  6. James, A.I., K. Hatfield and W.D. Graham. (2000). 'Review of Integrated Surface Water/Ground Water Computer Models', prepared for the St. Johns River Water Management District, by University of Florida, Gainesville, FL
  7. Johanson, R. C., J. C. Imhoff, J. L. Kittle, Jr. and A. S. Donigian. (1984). Hydrological Simulation Program FORTRAN(HSPF) : User Manual for Release 8.0, EPA-600/3-84-066, Environmental Research Laboratory, Athens, GA. 30613
  8. Knisel, W. G. (1980). CREAMS, A filed scale model for chemicals, runoll, and erosion from agricultural management systems. U.S. Dept. Agric. Conserv. Res. Rept. No. 26
  9. Lal, A. M. W., M. Belnap, and R. Van Zee. (1998). 'Simulation of OVerland and Groundwater Flow in the Everglades National Park', Proceedings of the International Water Resources Engineering Conference in Memphis, Tennessee, Volume One, American Society of Civil Engineers, pp. 610-615
  10. McDonald, M.G. and A.W. Harbaugh. (1988). 'A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model', U.S. Geological Survey Techniques of Water Resources Investigations Report Book 6, Chapter A1, 528 p.
  11. SDI Environmental Service, Inc. (1997). 'Water Resource Evaluation and Integrated Hydrologic Model of the Central Northern Tampa Bay Region', Final Report ISGW/CNTB Model SDE Project No.WCF-690, Prepared for West Coast Regional Water Supply Authority, Clearwater Florida
  12. Sophocleous, M.S., J.K. Koeliker, R.S. Govindaraju, T. Birdie, S.R. Ramireddygari and S.P. Perkins. (1999). Integrated Numerical Modeling for Basin-Wide Water Management: The Case of the Rattlesnake Creek Basin in South-Central Kansas. Journal of Hydrology. Vol. 214 pp. 179-196 https://doi.org/10.1016/S0022-1694(98)00289-3
  13. Sophocleous, M.S., S.P. Perkins, N.G.Stadnyk, and R.S. Kaushal. (1997). Lower Republican Stream-Aquifer Project, Final Report, Kansas Geological Survey Open File Report 97-8, 1930 Constant Avenue, University of Kansas, Lawrence, KS 66047-3726
  14. South Florida Water Management District. (1999). 'A Primer to the South Florida Water Management Model (Version 3.5),' Hydrologic Systems Modeling Division, Planning Department, South Florida Water Management District, West Palm Beach, Florida
  15. Swain, E.D. and E.J. Wexler. (1996). 'A Coupled Surface-Water and Ground-water Flow Model (MODBRANCH) for Simulation of Stream-Aquifer Interaction', U.S. Geological Survey Techniques of Water Resources Investigations Report Book 6, Chapter A6, 125p
  16. Tampa Bay Water. (2001). Scientific Review of The Integrated Hydrologic Model Isgw/Cntb121, Final Report, Tampa Bay Water 2535 Landmark Drive, Suite 211 Clearwater, FL 33761-3930
  17. Walton, R, E.J. Wexler and R.S. Chapman. (1999). 'MODNET: An Integrated Groundwater/Open Channel Flow Model', prepared by WEST Consultants, Inc.
  18. Walton, R., T.H. Martin, Jr., R.S. Chapman and J.E. Davis. (1995). 'Investigation of Wetlands Hydraulic and Hydrological Processes, Model Development, and Application', Wetlands Research Program Technical Report WRP-CP-6 prepared for US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS
  19. Williams, J. R., A.D.Nicks, and J.G.Arnold. (1985). SWRRB, Simulator for water resources in rural basins. Journal of Hydraulic Engineering. ASCE, Vol. 111, No. 6, pp.970-986 https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(970)

Cited by

  1. Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.301
  2. Development of Relational Formula between Groundwater Pumping Rate and Streamflow Depletion vol.45, pp.12, 2012, https://doi.org/10.3741/JKWRA.2012.45.12.1243
  3. The changes in potential usable water resources by increasing the amount of groundwater use: the case of Gapcheon watershed in Korea vol.14, pp.1, 2010, https://doi.org/10.1007/s12303-010-0004-6
  4. Assessment of Streamflow Depletion Due to Groundwater Pumping from a Well vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1079
  5. Development and application of the integrated SWAT–MODFLOW model vol.356, pp.1-2, 2008, https://doi.org/10.1016/j.jhydrol.2008.02.024
  6. Estimation of Natural Streamflow for the Bokhacheon Middle-upper Watershed vol.46, pp.12, 2013, https://doi.org/10.3741/JKWRA.2013.46.12.1169
  7. Validity evaluation of a groundwater dam in Oshipcheon River, eastern Korea using a SWAT–MODFLOW model vol.76, pp.22, 2017, https://doi.org/10.1007/s12665-017-7085-8
  8. Application of an Integrated SWAT–MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta vol.11, pp.1, 2019, https://doi.org/10.3390/w11010110