DOI QR코드

DOI QR Code

인체폐암세포의 Bcl-2 family 및 cyclooxygenases의 발현에 미치는 해면동물 Sarcotragus sp. 유래 furanoterpenoids의 영향

Regulation of Bcl-2 Family and Cyclooxygenases by Furanoterpenoids Isolated from a Marine Sponge Swcotragus nt. in Human Lung Cancer A549 Cells.

  • 최영현 (동의대학교 한의과대학 생화학교실) ;
  • 최혜정 (부산대학교 약학대학 약학과) ;
  • 김남득 (부산대학교 약학대학 약학과) ;
  • 정지형 (부산대학교 약학대학 약학과)
  • 발행 : 2004.06.01

초록

본 연구에서 국내 연근해에 서식하는 해면 Sarcotragus sp. (Dictyoceratida속)에서 분리 추출된 7종의 furanoterpenoid계 화합물〔sarcotin A, epi-sarcotin A, ircinin-1, epi-sarcotrine B, sarcotin I, (8E,13Z,20Z) -strobilinin/ (7E,13Z,20Z) -felixinin and (7E,12E,18R,20Z)-variabilin〕의 항암 활성을 비교하기 위하여 A549 인체폐암세포를 대상으로 그들의 세포독성을 조사하였고, 이와 연관된 세포증식 억제 및 apoptosis 유발에 관여할 것으로 예상되는 중요한 유전자 몇 가지의 발현에 미치는 영향을 조사하였다. 조사된 7종의 화합물 모두 처리 농도 의존적으로 A549 폐암세포의 증식을 억제하였는데, 그중 sarcotin A 및 (7E,12E,18R,20Z)-variabilin이 비교적 높은 세포독성을 나타내었다. 이러한 세포증식의 억제는 종양억제 유전자 p53 의존적 또는 비의존적으로 Bcl-2 유전자에 대한 Bax의 발현 증가와 연관된 apoptosis 유발과 관련이 있었으며, epi-sarcotin A, ircinin-1 및 epi-sarcotrine B 처리군에서 이러한 현상은 두드러지게 관찰되었다. 또한 epi-sarcotin A와 ircinin-1은 COX-1의 발현에는 아무런 영향을 미치지 않았으나, COX-2의 발현은 선택적으로 저해하였다. 이러한 결과는 해양 해면동물에서 유래된 furanoterpenoid계 화합물이 선택 적으로 강력한 항암효과를 가질 수 있다는 것을 의미한다.

We investigated the cytotoxic effects of seven furanoterpenoids 〔sarcotin A, epi-sarcotin A, ircinin-1, epi-sarcotrine B, sarcotin I, (8E, l3Z, 20Z)-strobilinin/(7E,l3Z, 20Z)-felixinin and (7E,12E,18R,20Z)-variabilin〕 isolated from the sponge Sarcotragus sp. (the order Dictyoceratida) on the growth of A549 human lung carcinoma cells. MTT data revealed that sarcotin A and (7E,12E,18R,20Z)-variabilin exhibited higher potencies on the anti-proliferative activities than the other compounds in A549 cells. The growth inhibition by treatment with compounds (especially epi-sarcotin A, ircinin-1 and epi-sarcotrine B) were associated with the induction of apoptotic cell death through the concentration-dependent increase of Bax/Bcl-2 ratio in a p53-dependent or independent pathway Additionally, epi-sarcotin A and ircinin-1 strongly inhibited the levels of cyclooxygenase (COX)-2 expression without alteration of COX-1. Taken together, the results suggest that the furanoterpenoids from the marine sponge have strong potentials as candidates for anti-cancer drugs.

키워드

참고문헌

  1. Curr. Pharm. v.8 The role of cyclooxygenase inhibitors in cancer prevention Anderson,W.F.;A.Umar;J.L.Viner;E.T.Hawk https://doi.org/10.2174/1381612023394935
  2. Am. J. Pathol. v.136 Apoptosis The role of the endonuclease Arends,M.J.;R.G.Morris;A.H.Wyllie
  3. Br. J. Cancer v.85 Activation and activities of the p53 tumour suppressor protein Balint,E.E.;K.H.Vousden https://doi.org/10.1054/bjoc.2001.2128
  4. Int. J. Cancer v.98 p53 : an ubiquitous target of anticancer drugs Blagosklonny,M.V. https://doi.org/10.1002/ijc.10158
  5. Cell. Mol. Biol. Res. v.40 Apoptosis and the cell cycle Chiarugi,V.;L.Magnelli;G.Basi
  6. Science v.249 Cell proliferation in carcinogenesis Cohen,S.;L.Ellwein https://doi.org/10.1126/science.2204108
  7. Mutat. Res. v.365 Role of increased DNA replication in the carcinogenic risk of nonmutagenic chemical carcinogens Cunningham,M.L. https://doi.org/10.1016/S0165-1110(96)90012-3
  8. J. Cancer Res. Clin. Oncol. v.127 Cyclooxygenase-2: a novel target for cancer chemotherapy? Dempke,W.;C.Rie;A.Grothey;H.J.Schmoll https://doi.org/10.1007/s004320000225
  9. Cancer Res. v.54 WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis El-Deiry,W.S.;J.W.Harper;P.M.O'Connor;V.E.Velculescu;C.E.Canman;J.Jackman;J.A.Pietenpol;M.Burrell;D.E.Hill;Y.Wang;K.G.Wiman;W.E.Mercer;M.B.Kastan;K.W.Kohn;S.J.Elledge;K.W.Kinzler;B.Vogelstain
  10. Cell Biol. Int. v.17 Multiple pathways to apoptosis Evans,V.G. https://doi.org/10.1006/cbir.1993.1087
  11. Prog. Exp. Tumor Res. v.37 Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis Gately,S.;R.Kerbel https://doi.org/10.1159/000071373
  12. Best Pract. Res. Clin. Gastroenterol v.15 COX-2 inhibition and prevention of cancer Giercksky,K.E. https://doi.org/10.1053/bega.2001.0237
  13. Cell v.75 The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases Harper,J.W.;G.R.Adami;N.Wei;K.Keyomarsi;S.J.Elledge https://doi.org/10.1016/0092-8674(93)90499-G
  14. Cell v.75 Bcl-2 functions in an antioxidant pathway to pevent apoptosis Hockenbery,D.M.;Z.N.Oltvai;X.M.Yin;C.L.Milliman;S.L.Korsmeyer https://doi.org/10.1016/0092-8674(93)80066-N
  15. Semin. Nephrol. v.18 Necrosis and apoptosis in acute renal failure Lieberthal,W.;J.S.Koh;J.S.Levine
  16. J. Nat. Prod. v.64 New cytotoxic sesterterpenes from the sponge Sarcotragus species Liu,Y.;B.H.Bae;N.Alam;J.Hong;C.J.Sim;C.O.Lee;K.S.Im;J.H.Jung https://doi.org/10.1021/np0101494
  17. J. Nat. Prod. v.65 Cytotoxic pyrrolo- and furanoter- penoids from the sponge Sarcotragus species Liu,Y.;J.Hong;C.O.Lee;K.S.Im;N.D.Kim;J.S.Choi;J.H.Jung https://doi.org/10.1021/np020145e
  18. Cell v.74 p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Lowe,S.W.;H.E.Ruley,T.Jacks;D.E.Housman https://doi.org/10.1016/0092-8674(93)90719-7
  19. Semin. Cancer Biol. v.13 The p53-Mdm2 module and the ubiquitin system Michael,D.;M.Oren https://doi.org/10.1016/S1044-579X(02)00099-8
  20. Cell v.80 Tumor suppressor p53 is a direct transcriptional activator of the human bax gene Miyashita,T.;J.C.Reed https://doi.org/10.1016/0092-8674(95)90412-3
  21. Biochim. Biophys. Acta. v.605 The stages of initiation and promotion in hepatocarcinogenesis Pitot,H.C.;A.E.Sirica
  22. Nature v.391 Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Rosse,T.;R.Olivier;L.Monney;M.Rager;S.Conus;I.Fellay;B.Jansen;C.B.Borner https://doi.org/10.1038/35160
  23. Lab. Invest. v.79 Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo Sawaoka,H.;S.Tsuji;M.Tsujii;E.S.Gunawan;Y.Sasaki;S.Kawano;M.Hori
  24. Eur. J. Biochem. v.254 Apoptosis signaling by death recptors Schulze-Osthoff,K.;D.Ferrari;M.Los;S.Wesselborg;M.E.Peter. https://doi.org/10.1046/j.1432-1327.1998.2540439.x
  25. Pathol. Annu. v.17 Necrosis and apoptosis: destinct modes of cell death with fundamentally different significance Searle,J.;J.F.Kerr;C.J.Bishop
  26. Science v.263 Premature p34cdc2 activation required for apoptosis Shi,L.;W.K.Nishioka;J.Th'ng;E.M.Bradbury;D.W.Litchfield;A.H.Greenberg https://doi.org/10.1126/science.8108732
  27. Annu. Rev. Biochem. v.69 Cyclooxygenases: structural, cellular, and molecular biology Smith,W.L.;D.L.DeWitt;R.M.Garavito https://doi.org/10.1146/annurev.biochem.69.1.145
  28. Prog. Exp. Tumor Res. v.37 Role of COX-independent targets of NSAIDs and related compounds in cancer prevention and treatment Soh, J.W.;I.B.Weinstein https://doi.org/10.1159/000071377
  29. Oncology(Huntingt) v.16 Current application of selective COX-2 inhibitors in cancer prevention and treatment Stratton,M.S.;D.S.Alberts
  30. Mutat. Res. v.480 Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kB activation Surh,Y.J.;K.S.Chun;H.H.Cha;S.S.Han;Y.S.Keum;K.K.Park;S.S.Lee
  31. Am. J. Clin. Oncol. v.26 Development of COX inhibitors in cancer prevention and therapy Umar,A.;J.L.Viner,W.F.Anderson;E.T.Hawk
  32. Int. J. Cancer v.94 is COX-2 inhibition a panacea for cancer prevention? Vainio,H. https://doi.org/10.1002/ijc.1518
  33. Int. Rev. Cytol. v.68 Cell death: the significance of apoptosis Wyllie,A.H.;J.F.Kerr;A.R.Currie https://doi.org/10.1016/S0074-7696(08)62312-8
  34. J.Clin. Invest. v.107 Therapeutic potential of inhibition of the NF-kB pathway in the treatment of inflammation and cancer Yamamoto,Y.;R.B.Gaynor https://doi.org/10.1172/JCI11914
  35. Pharmacol. Ther. v.92 The machinery of programmed cell death Zimmermann,K.C.;C.Bonzon;D.R.Green. https://doi.org/10.1016/S0163-7258(01)00159-0

피인용 문헌

  1. Ircinin-1 induces cell cycle arrest and apoptosis in SK-MEL-2 human melanoma cells vol.44, pp.3, 2005, https://doi.org/10.1002/mc.20084
  2. Petrotetrayndiol A induces cell cycle arrest and apoptosis in SK-MEL-2 human melanoma cells through cytochrome c-mediated activation of caspases vol.232, pp.2, 2006, https://doi.org/10.1016/j.canlet.2005.02.030