Humidity-Sensitive Properties of Polyelectrolytes Containing Alkoxysilane Crosslinkers

  • Published : 2004.06.01

Abstract

We have prepared new polyelectrolytes containing trialkoxysilyl groups by copolymerizing 3-(trimethoxysilyl)propyl methacrylate (TSPM) with either [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride (METAC), [2-(methacryloyloxy)ethyl]dimethyl propyl ammonium bromide (MEDPAB), or [2-(acryloyloxy)ethyl]trimethyl ammonium chloride (AETAC). The copolymers TSPM/METAC, TSPM/MEDPAB, and TSPM/METAC having compositions of 15/85, 10/90, and 5/95, respectively, were self-crosslinkable polyelectrolytes that possess humidity-sensitive properties. We measured the impedances of the copolymers at various relative humidities (RHs) and found that the resistance was dependent on the content of METAC, MEDPAB, or AETAC. The impedance changed from 10$\^$7/ $\Omega$ at 20% RH to 10$^3$ $\Omega$ at 95% RH, which is quite a suitable range for a humidity sensor that is to be utilized at ambient humidity. We also performed tests of the materials temperature dependence, hysteresis, response time, and water durability.

Keywords

References

  1. Handbook of Materials and Moisture
  2. Sens. Actuators B v.85 Y. Sakai;Y. Sadaoka;M. Matsuguchi
  3. Sens. Actuators v.4 M. Hijikigawa;S. Miyosh;T. Sugihara;A. Jinda https://doi.org/10.1016/0250-6874(83)85038-0
  4. J. Appl. Polym. Sci. v.70 Y. Wei;D. Jin;G. Wei;D. Yang;J. Xu https://doi.org/10.1002/(SICI)1097-4628(19981128)70:9<1689::AID-APP6>3.0.CO;2-V
  5. ACS. Symp. Ser. 585 Hybrid Organic-Inorganic Composite Y. Wei;W. Wang;J. M. Yeh;B. Wang;D. Yang;J. K. Murray, Jr.;D. Jin;G. Wei;J. E. Mark(ed.);C. Y. C. Lee(ed.);V. A. Bianconi(ed.)
  6. Sens. Actuators v.9 Y. Sakai;Y. Sadaoka;K. Ikeuchi https://doi.org/10.1016/0250-6874(86)80014-2
  7. J. Electrochem. Soc. v.138 Y. Sakai;Y. Sadaoka;M. Matsuguchi;Y. Kanakura;M. Tamura https://doi.org/10.1149/1.2085997
  8. Sens. Actuators B v.73 C. W. Lee;H. W. Rhee;M. S. Gong https://doi.org/10.1016/S0925-4005(00)00668-7
  9. J. Electrochem. Soc. v.140 Y. Sakai;M. Matsuguchi;Y. Sadaoka;K. Hirayama https://doi.org/10.1149/1.2221063
  10. Sens. Actuators B v.16 Y. Sakai;Y. Sadaoka;M. Shimada https://doi.org/10.1016/0250-6874(89)85006-1
  11. Sens. Actuators B v.73 H. W. Rhee;M. H. Lee;M. S. Gong https://doi.org/10.1016/S0925-4005(00)00703-6
  12. Syn. Met. v.106 C. W. Lee;H. W. Rhee;M. S. Gong https://doi.org/10.1016/S0379-6779(99)00132-0
  13. Polymer (Korea) v.16 J. S. Jo;H. M. Lee;R. Y. Lee;K. H. Kim;M. S. Gong
  14. Polymer (Korea) v.18 J. S. Paek;R. Y. Lee;J. K. Park;M. S. Gong
  15. Polymer (Korea) v.19 J. S. Paek;J. T. Kim;M. S. Gong
  16. Polymer (Korea) v.22 O. Kim;M. S. Gong
  17. Macromol. Res. v.11 C. W. Lee;M. S. Gong https://doi.org/10.1007/BF03218371
  18. Korean J. Mater. Res. v.5 J. S. Paek;M. S. Gong
  19. Sens. Actuators v.13 Y. Sakai;Y. Sadaoka;H. Hukumoto https://doi.org/10.1016/0250-6874(88)85004-2
  20. Sens. Actuators B v.66 Y. Sakai;M. Matsuguchi;T. Hurukawa https://doi.org/10.1016/S0925-4005(00)00313-0
  21. J. Mater. Chem. v.12 M. S. Gong;S. W. Joo;B. K. Choi https://doi.org/10.1039/b108647m
  22. J. Appl. Polym. Sci. v.89 C. W. Lee;O. Kim;M. S. Gong https://doi.org/10.1002/app.12253
  23. Sens. Actuators B v.11 C. W. Lee;M. S. Gong
  24. J. Appl. Polym. Sci. v.82 J. Jang;J. Bae;D. Kang https://doi.org/10.1002/app.2079
  25. Korean J. Mater Res. v.3 T. M. Kim;J. K. Park;R. Y. Lee;M. S. Gong