Mechanical Properties of Silica Nanoparticle Reinforced poly(ethylene 2, 6-naphthalate)

  • Kim, Seong-Hun (Division of Applied Chemical Engineering, College of Engineering, Hanyang University) ;
  • Ahn, Seon-Hoon (Division of Applied Chemical Engineering, College of Engineering, Hanyang University) ;
  • Kim, Byoung-Chul (Division of Applied Chemical Engineering, College of Engineering, Hanyang University) ;
  • Shim, Kwang-Bo (Department of Ceramic Engineering, CPRC, College of Engineering, Hanyang University) ;
  • Cho, Bong-Gyoo (Industrial Waste Recycling R&D Center)
  • Published : 2004.06.01

Abstract

We added surface-modified silica nanoparticles to poly(ethylene 2,6-naphthalate) (PEN) to investigate their effect on the mechanical properties on the PEN nanocomposite material. The torque and total torque values of the composites decreased in the silica nanoparticle composites. The tensile modulus of the composites reinforced with unmodified silica nanoparticles increased upon increasing the silica content, while the tensile strength and elongation decreased accordingly. In contrast, stearic acid-modified, silica nanoparticle reinforced PEN composites exhibited an increase in elongation and a decrease in tensile modulus upon addition of the silica nanoparticles because the stearic acid that had adsorbed onto the surface of the silica nanoparticle in multilayers could act as a plasticizer during melt compounding. Stearic acid modification had a small effect on the crystallization behavior of the composites. We calculated theoretical values of the tensile modulus using the Einstein, Kerner, and Nielsen equations and compared these values with the experimental data obtained from the composites. The parameters calculated using the Nielsen equation and the Nicolais- Narkis model revealed that the interfacial adhesion between silica nanoparticles and the PEN matrix could be improved.

Keywords

References

  1. J. Appl. Polym. Sci. v.70 S. H. Kim;S. W. Kang;J. K. Park;Y. H. Park https://doi.org/10.1002/(SICI)1097-4628(19981107)70:6<1065::AID-APP3>3.0.CO;2-M
  2. Fibers and Polymers v.1 S. H. Kim;S. W. Kang https://doi.org/10.1007/BF02875190
  3. Macromol. Res. v.11 J. Y. Kim;E. S. Seo;S. H. Kim;T. Kikutani https://doi.org/10.1007/BF03218279
  4. J. Polym. Sci., Part B: Polym. Phys. v.42 J. Y. Kim;S. H. Kim;T. Kikutani https://doi.org/10.1002/polb.10726
  5. Polymer v.35 Y. Ulcer;M. Cakmak https://doi.org/10.1016/S0032-3861(05)80039-4
  6. Polymer v.44 S. H. Kim;S. H. Ahn;T. Hirai https://doi.org/10.1016/S0032-3861(03)00623-2
  7. Polymer v.42 J. W. Cho;D. R. Paul https://doi.org/10.1016/S0032-3861(00)00380-3
  8. Macromol. Res. v.10 S. S. Im;S. C. Chung;W. G. Hahm;S. G. Oh https://doi.org/10.1007/BF03218309
  9. Colloids and Surfaces A: Physicochem. Eng. Aspects. v.154 M. Fuji;T. Takei;T. Watanabe;M. Chikazawa https://doi.org/10.1016/S0927-7757(98)00905-4
  10. Compos. Sci. Tech. v.63 M. W. Lee;X. Hu;L. Li;K. C. Tam https://doi.org/10.1016/S0266-3538(02)00222-1
  11. J. Appl. Polym. Sci. v.77 E. D. Bliznakov;C. C. White;M. T. Shaw https://doi.org/10.1002/1097-4628(20000929)77:14<3220::AID-APP250>3.0.CO;2-4
  12. Composites Part A v.29A C. M. Liauw;G. C. Lees;S. J. Hurst;R. N. Rothon;S. Ali
  13. Proceedings of Functional Effect Fillers 2000 C. M. Liauw;R. N. Rothon;G. C. Lees;P. Dumitru;Z. Iqbal;V. Khunova;P. Alexy
  14. J. Appl. Polym. Sci., Accepted S. H. Ahn;S. H. Kim;S. G. Lee
  15. J. Biomed. Mater. Res. v.57 Q. Liu;J. Ding;D. E. Chambers;S. Debnath;S. L. Wunder;G. R. Baran https://doi.org/10.1002/1097-4636(20011205)57:3<384::AID-JBM1181>3.0.CO;2-F
  16. J. Appl. Polym. Sci. v.74 K. Premphet;P. Horanont https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3445::AID-APP19>3.0.CO;2-0
  17. Polymer v.30 S. Buchner;D. Wiswe;H. G. Zachmann https://doi.org/10.1016/0032-3861(89)90018-9
  18. Phys. Rev. Ser. v.17 E. W. Washburn
  19. Mechanical properties of polymers and composites(2nd ed.) L. E. Nielsen;R. F. Landel
  20. Eur. Polym. J. v.34 G. G. Echevarria;J. I. Eguiazabal;J. Nazabal https://doi.org/10.1016/S0014-3057(97)00228-0
  21. Ann. Phys. v.19 A. Einstein
  22. J. Appl. Phys. v.16 E. J. Guth https://doi.org/10.1063/1.1707495
  23. Proc. Phys. Soc. B v.69 E. H. Kerner https://doi.org/10.1088/0370-1301/69/8/305
  24. Appl. Polym. Symp. v.12 L. E. Nielsen
  25. J. Appl. Polym. Sci. v.14 T. B. Lewis;L. E. Nielsen https://doi.org/10.1002/app.1970.070140604
  26. J. Appl. Phys. v.25 K. H. Sweeny;R. D. Geckler https://doi.org/10.1063/1.1721828
  27. J. Appl. Polym. Sci. v.10 L. E. Nielsen https://doi.org/10.1002/app.1966.070100107
  28. Polym. Eng. Sci. v.11 L. Nicolais;M. Narkis https://doi.org/10.1002/pen.760110305
  29. J. Appl. Polym. Sci. v.29 A. K. Gupta;S. N. Purwar https://doi.org/10.1002/app.1984.070291126
  30. Polym. Eng. Sci. v.12 S. Sahu;L. J. Broutman https://doi.org/10.1002/pen.760120204
  31. J. Appl. Polym. Sci. v.7 E. B. Prestridge https://doi.org/10.1002/app.1963.070070103