DOI QR코드

DOI QR Code

Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems

마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성

  • 홍대석 (목포대학교 신소재공학과) ;
  • 이성희 (목포대학교 신소재공학) ;
  • 이충효 (목포대학교 신소재공학) ;
  • 김지순 (울산대학교 지역협력연구센) ;
  • 권영순 (울산대학교 지역협력연구센터)
  • Published : 2004.06.01

Abstract

Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

Keywords

References

  1. Metal. Trans. v.1 J.S.Benjamin
  2. Metall. Trans. v.5 J.S.Benjamin;T.E.Vollin https://doi.org/10.1007/BF02644161
  3. Appl. Phys. Lett. v.43 C.C.Koch;O.B.Cavin;C.G.McKamey;J.O.Scarbrough https://doi.org/10.1063/1.94213
  4. J. Non-Cryst. Solid v.76 R.B.Schwarz;R.R.Petich;C.K.Saw https://doi.org/10.1016/0022-3093(85)90005-5
  5. J. Mat. Sci. v.25 U.Mizutani;C.H.Lee https://doi.org/10.1007/BF00714046
  6. J. Less-Common Metals v.145 L.Schultz https://doi.org/10.1016/0022-5088(88)90281-0
  7. J. Magn. Magn. Mater. v.87 J.M.D.Coey;H.Sun https://doi.org/10.1016/0304-8853(90)90756-G
  8. Mater. Res. Soc. Symp. Pro. v.132 E.Hellstern;H.J.Fecht;Z.Fu;W.L.Johnson
  9. J. of Metals v.39 R.Sundaresan;F.H.Froes
  10. Scripta Metall. v.23 G.G.Schaffer;P.G.McCormick https://doi.org/10.1016/0036-9748(89)90255-X
  11. Mat. Sci. Forum v.88-90 K.Tokumitsu https://doi.org/10.4028/www.scientific.net/MSF.88-90.715
  12. J. Am. Ceram. Soc. v.74 no.6 P.Matteazzi;G.Le Gaer https://doi.org/10.1111/j.1151-2916.1991.tb04116.x
  13. Appl. Phys. Lett. v.55 G.G.Schaffer;P.G.McCormick https://doi.org/10.1063/1.101750
  14. Proceeding of Korean Association of Crystal Growth C.H.Lee
  15. Metallurgical Thermochemistry O.Kubaschewski;C.B.Alcock
  16. J. Inst. Met. v.75 W.H.Hall
  17. Mat. Sci. Forum v.449-452 C.H.Lee;S.H.Lee;S.Y.Chun;S.J.Lee;J.S.Kim https://doi.org/10.4028/www.scientific.net/MSF.449-452.257
  18. J. Appl. Phys. v.64 L.Schultz;J.Wecker https://doi.org/10.1063/1.342234