Retrieval Performance of XML Documents Using
Object-Relational Databases

MA-BAY dolgwo] 2o o3 XMLEHY AMAR% H7}

4 8 M(Hee-Sop Kim)*

ABSTRACT

The purpose of this study is to evaluate the performance of XML retrieval based on
ORDBMSs(Object-Relational Database Management Systems) approach. This paper describes
indexing and retrieval methods for XML documents and the methodologies of experiments at
INEX(Initiative for the Evaluation of XML retrieval). Like any other traditional information
retrieval experiment, the test collection was consists of documents, topics/queries, task, relevance
assessments and evaluation, EXIMA™ Supply, a kind of native XML DB based on ORDBMS
technologies, is used for this experiment. Although this approach has many benefits, for example,
no delay in storing and searching XML documents, but it showed relatively disappointed retrieval
performance at INEX 2002, This result may caused since the given topics had to be decomposed
and modified to be processed by the XPath processor, and during this modification the original
meaning of topics can be changed inevitably and some important information may pass over.

=

2
-
A&

22 MA-BAF dojeluo]x Hol 9§ XML #de A4 A45E Hrele Aotk
01]*‘]‘: INEX(Initiative for the Evaluation of XML retrieval)l4¢] XML &8¢ Ao 2 4
| disted, 28l A RS diste] 7lestn ok oiFEe) AEH ArAN 4587t
q9} Zro] B Aol A Al2H HAE ZHlM(test collection) FH(F, XML £¢), E9, ad hoc
A e U2 o]RojHth 12lil ORDBMS 7|&4E8 7jute g 7HHL5 g XML dlojejH
o 92<) EXIMA™ Supply & AHEte] INEXoIA A|ge 72 XML 2858 Agsta @43}
Aok B =RoAMT A AR Alzgld dish AR 715ES A 3 AN #4 a83 INEX
20029142 458 7F Aol disle], oz sjaEofol & 7|5 FHOM =5k 9o,

= [
ey rx
&

o2
.
2

AR
¥ 1= 0
2
>

L2

b4

719 =: XML documents, EXIMA supply, object-relational DBMS, IR performance evaluation,
INEX, XML +¢, #A - #4d DBMSs, AKX g4, 45 H7t

* FEdsty F9423%3 Y73 AHheesop@knu.ackr)
s =FFHRLAR 20049 59 219
s ANEALR 20043 649 169

190 WHEMAEE #2148 H23 2004

1. Introduction

XML(eXtensible Markup Language)
1s an emerging standard for the repre-
sentation and exchange of Internet data.
Most research on storing and indexing
XML documents has been based on the
work on semi-structured data. Models
for representing XML data have been
proposed from a database perspective
and they have been tailored to facilitate
querying processing on semi-structured
data.

The nature of this semi-structured
data is that it is self-descriptive, and
that it incorporates an operational
DTD(Document Type Definition). DTDs
define the structure of an XML docu-
ment, for example, what elements and
attributes are permitted in the docu-
ment. XML documents contain data, and
must contain exactly one root element
which will contain all the other ele-
ments. It might happen that an element
contains a set of sub-elements in addi-
tion to the data. For query purposes
XPath can be used. XPath is a language
for finding information in an XML
document. Using XPath, we can specify
the locations of document structures or
data in an XML document, and then
process this information using XSLT
(the Extensible Stylesheet Language

Family Transformations).

Generally, three data models can be
deployed for the persistent storage of
XML documents. First, the development
of specialized data management systems
which is tailored to store and retrieve
XML documents using special purpose
indices and techniques of query opti-
mization(e.g., McHugh, et al. 1997,
Fernandez et al. 1998). Second, for an
object-oriented DBMS(Database Mana-
gement System), an Ox(Bancihon et al.
1988), or Object store, can be used to
store XML document because of the
rich capability of this database sys-
tem(e.g., Bancihon, et al. 1988). Third,
when a relational DBMS is employed
XML data is mapped into relations and
queries posed in a semi-structured
query language which is then translated
into SQL(Structured Query Language)
queries(e.g., Khan and Rao 2001).

However, it is impossible to predict
which of these three approaches will be
widely accepted. The first, the use of a
specialized or special purpose database
system, may work best, once needs are
met concerning scalability and the level
of maturity required for the handling of
huge amounts of data. The second, an
object-oriented database system, seems
well-suited to complex data like XML,

but vulnerable in the area of evaluating

Retrieval Performance of XML Documents using Object—Relational Databases 191

queries addressed to a very large data-
base. The third approach, RDBMSs
{(Relational DBMSs), provides maturity,
stability, portability, and scalability. Fur-
thermore, since a majority of the data
on the web currently resides in and will
continue to be stored in RDBMSs, the
opportunity arises for constructing a
system using a RDBMS to store XML
documents, making it possible to seam-—
lessly query of data with one system
and one query language.

It has become crucial to address the
question of how large collections of
XML documents can be stored and re-
trieved efficiently and effectively. To
date, most work on storing, indexing,
querying, and searching documents in
XML has stemmed from the database
community’s work on semi-structured
data. However, among the early studies
in the community, ORDBMS has rece-
ived less attention to date. This was the
motivation for the present study which
sought how performs the ORDBMSs ap-
proach in its retrieval under large test

collections of XML docu ments.

2. Related Work

Many previous studies address stor—

age strategies for XML documents in

order to Iimprove query processing.
Most of these studies suggest storing
XML documents in traditional DBMS
due to the advantages of storing both
legacy structured data and XML data in
a single system, as well as using typical
functionalities of a DBMS. However,
there are still many open issues when
storing native XML documents in a tra-
ditional DBMS. First of all, most studies
are based on the relational data model,
which offers limited structures to repre-
sent the features of XML data, such as
nested relationships and ordering of
XML elements. Also, their DBMS sche-
ma representations are proprietary, and
querying these structures is usually
complex since the final users are not
familiar with them. Finally, few studies
support the typical features of XQuery,
i.e., the standard XML query language,
such as the FLWR(FOR-LET-WHERE-
RETURN) expressions, XPath express—
ions, and wildcard query operators(e.g.,
the ‘//" operator).

Figure 1 shows a brief comparison
between RDBMS approaches and XML
DB approaches.

Regardless of the DBMS data model,
Vieria, Ruberg and Mattoso(2003) iden-
tified four basic representation aproaces
to store XML data in a traditional data

192 WHEMEEIE H21E HF25W 2004

RDBMS

XML DB

- 2-dimensional table

- XML to DB conversion

- multiple JOINs for retrieval

- Find books with text “XML native database
model”

~ multi-dimensional

~ structural searching

- native structure

~ Find abstracts of articles that have “XML native
database model” in their reference

{Figure 1> Comparison between RDBMS approaches and XML DB approaches

tbase system as follows:

* Black-box - uses special data type
such as CLOBs(Character Binary
Large Objects) to store an XML
document with its original format;

¢ Universal representation for the el-
ements - uses a single data struc-
ture for all types of an XML docu-
ment;

® Specific representation for the ele-
ments — maps each named XML el-
ement to a specific data struc-
ture(e.g., tables in RDBMSs or ob-
ject collections in ODBMSs); and

® Generic representation for the ele-
ments — adopts a generic schema to
represent the XML document struc-
ture, such as the DOM(Document

Object Model) tree.

Figure 2 shows a category of above
four approaches according to their data
model.

The black-box approach is very sim-
ple and closer in many aspects to the
file system approach, thus not offering
much flexibility for the manipulation of
XML data. The use of special data
types can be found in the Oracle data-
base system and in the DB2(Cheng and
Xu 2000). In the universal representa-
tion for the elements, the XML repre-
very
However, there is no flexibility to effi-

sentation schema is simple.
ciently manipulate the XML schema.

The specific representation for the ele

Generic representation

Specific representation

Schema-based (e.g.,
Florescu and Lossman
1999)

DOM (e.g.,, W3C
Document Object
Model)

Black-box Universal representation
Object Special types (e.g., Object based approach
data mode! | Cheng and XU 2000) | ({e.g, Tian et al. 2002)
Relational . Universal Inlining/
data grpeciaﬁ ypes (eg. (e.g., Florescu and
model ace Elmasri 2001)

Binary DTD (eg., The
Apache XML project)

Relational approach
(e.g., Manolescu et al.
2000)

{Figure 2> Category of XML data storage in traditional DBMSs

Retrieval Performance of XML Documents using Object—Relational Databases 193

ments 1s the most flexible representa-
tion approach, where each named XML
element has its own structure on the
DMBS, so that attributes of a given
XML element are directly mapped to
the attributes of its equivalent database
structure. This approach optimizes the
access to XML elements of a given
type, but it may generate a high num-
ber of type structures on the DBMS.
Additionally, XML elements with dis-
tinct types but with identical names
may not be properly stored in the data-
base due to name conflicts. Finally,
adopting a generic schema to represent
XML documents corresponds to the
DOM approach presented in W3C
Object Mo- del(see,
http://www.w3.org/DOM). This ap-

proach does not generate a large num-

Document

ber of data structure, hence it prevents
possible name conflicts among XML
documents. However, users must know
the specific structures of the generic
representation schema in order to query
the XML database.

An example of ORDBMS approach
Shimura, Yoshikawa and Uemura(1999)
decompose an XML document into a set
of nodes and store these nodes in sev-
eral tables along with encoded path in-
formation from the root to each node,

However, this path does not serve as a

primary key. One of the shortcomings of
their path encoding is that it does not
facilitate the construction of XML docu-
ment on the fly from the result set of
database SQL query.

The transparent execution of XQuery
queries In a traditional DBMS requires a
process of automatic translation from
XQuery to the DBMS query language.
This task is not trivial because the
translator must know the schema struc-
ture representation used to store the
XML documents in the DBMS. There-
fore, the choice of the representation
schema in a DBMS determines the basis
to the success of efficient XQuery
execution. The translation process in the
relational database model generates in-
efficient results for recursive queries
because the mapping results in long
SQL statements containing a great
number of joins. On the other hand, the
object-oriented database model offers
more semantic to the representation of
relationships, and it provides specific al-
gorithms to the execution of queries
containing path expressions. Fegaras
and Elmasri(2001) have presented an
XML query language, called XML-OQL,
and an algebra that allows its trans-
lation to the OQL(Object Query Lang-
uage) language. Although their mapping

approach is more semantic-conservative

194 R £218 F2% 2004

than those in the relational model, the
standard language XQuery is not adopt-
ed, and a specific schema is used to
store the XML data.

Vieira, Ruberg and Mattoso(2003)
present a model of storage architecture
of XML documents in ORDBMS while
providing transparent execution of
XQuery queries. Their proposal is hased
on adopting the DOM schema to map
XML elements to object classes, and to
store them in an ORDBMS. The main
module of their proposal is the XVerter
translator, which represents a set of
transformation rules to covert XQuery
queries on XML documents into SQL3
statements on the corresponding DOM
classes. The DOM format was chosen
because it has already been widely used
in applications that manipulate XML
documents in main memory, supported
by pregramming languages. Beside that,
the DOM format facilitates the total or
partial recovery of XML documents in
such a way that the original features of
the XML data are preserved, such as
the order of the XML elements. The
DOM format allows better performance
for typical tree-based queries. However,
for traditional queries over element
types, such approach does not fit well.
The DOM format is very close to the

object-based representation schema an-

alyzed in Tian et al(2002) which pres-
ents a good performance for query
processing.

Many approaches, which have been
mainly proposed by the database com-
munity, are close to the research done
on semi-structured databases(McHugh
et al. 1997, Ceri, Fraternali and Para-
boschi 2000). In this case, the main goal
is to build semi-structured management
systems that facilitate query processing.
Other approaches are stemmed by the
work done on structured documents
from the perspective of information re-
trieval(Jang, Kim and Shin 1999; Moffat
and Zobel 1996; Navarro and Baeza-
Yates 1997). Among the database ap-
proaches is the Lore system. Lore ac-
complishes the uploading of new docu-
ments by adding the elements of the
documents in a tree like structure and
updating several indexes(value index,
text index, link index and path index).
From that point on, any data access is
performed by considering the whole da-
tabase as a huge tree that contains
XML elements. Lore approach seems to
view an XML document as a database
and a set of documents as a single large
database where all documents are mixed
together into a tree like structure.

In Kotsakis(2002) approach, a set of
XML documents is handled as is(set of

Retrieval Performance of XML Documents using Object—Relational Databases 195

documents) and the index facilitates the
retrieval of XML documents that match
better the query terms. The output of
the query evaluation is a set of XML
documents. The proposed approach is
closer to the information retrieval end
and the objective is to retrieve the XML
documents that match the user prefer-
ences expressed by way of Boolean
query terms. Indexing structures for
structured documents are discussed in
Lee et al(1996).

3. Experiment

3. T INEX

The aim of INEX(Initiative for the
Evaluation of XML retrieval) is to pro-

vide means, in the form of a large test

collection and appropriate scoring meth-
ods, for the evaluation of retrieval of
XML document. It is organized by the
DELOS Network of Excellence for
Digital Libraries, initiates an interna-
tional, coordinated effort to promote
evaluation procedures for XML retrieval
and supports a forum to compare results
of each participant. 36 teams took part
in INEX 2002 from all around world.

3,2 An XML DB - EXIMA™ Supply

EXIMA™ Supply is a kind of native
XML DB which is based on ORDBMS
technologies to store and manage XML
documents developed by Incom 1&C Co.
Ltd. It can store and retrieve XML and
its related documents(e.g., DTD, XSL)
fast enough to process XML infor-
mation. EXIMA™ Supply is supporting

Figure 3) Architecture of EXIMA™ Supply

196 TE@EHEPEE B2LE B2 2004

XPath Standard to search elements in
XML documents. However, itis not pro-
vide any functionality of a searching
engine. This means that it cannot
search information as intelligently as
most searching engines do.

Therefore, it can preserve the native
features of XML documents by repre-
senting and storing them in object-ori-
ented structures. This is one of the im-
portant features of EXIMA™ Supply.
By means of this feature, the data and
hierarchical information of XML docu-
ments can be stored without modifi-
cation or distortion. Besides, EXIMA™
Supply helps manage and utilize XML
documents with ease by providing the
standard XPath query language. With
EXIMA™ Supply, there is no need to
transform XML documents into other
formats such as relational tables of
commercial DBMS while many XML
servers are using relation DBMS and
therefore XML documents must be

Root cabinet

Cabinet

Cabinet

h XML
Folder

transformed into relational tables, be-
cause it can treat the hierarchical struc-
tures of XML documents as it is. As a
result, there is no delay in storing and
searching XML documents and it is
possible to process XML data on the fly.

EXIMA™ Supply provides a logically
hierarchical structure to manage the
storage of XML documents. The logi-
cally hierarchical structure is the storage
structure that is transparently accessible
by users regardless of the internal phys-
ical storage structure. EXIMA™ Supply
has two kinds of storage types,
“Cabinet” and “Folder.” Cabinet is a log-
ical storage that can contain cabinets
and folders. Cabinet can be used to man-
age storage hierar- chically.

Folder is the storage where XML and
related documents are actually stored. A
folder can contain one DTD and corre-
sponding XML and XSL documents. On
the other hand, XML documents corre-

spond to a DTD can be stored in multi-

XML
document
L

document
EE—"

XML
document
. ——

{Figure 4> Storage Types of EXIMA™ Supply

Retrieval Performance of XML Documents using Object—Relational Databases 197

ple folders, if necessary.
The system was tested under the fol-
lowing software environment.
- 0S: Windows 2000 Professional
- XML Server: EXIMA™ Supply 1.0
- DBMS: UniSQL 5.1
- Web Server: Tomcat
- Searching client: Web application
developed with JSP
- Client/Server: Pentium III PC(256
MB memory)

3. 3 Test Coliection

The test collection consists of three
partsi(l) a set of XML documents
which were donated by the IEEE Com-
puter Society,(2) a set of topics which
consists of 30 CAS(content- and-struc-
tured) queries, and of 30 CO(content
only) queries, and(3) relevance assess-
ments which were provided by the
INEX participants.

3. 3. 1 Documents

[EEE provided the XML documents
which consist of the full texts of 12,107
articles from 12 magazines and 6 trans-
actions of the IEEE Computer Society’s
publications, covering the period of
1995-2002, and totaling 494 megabytes
in size. Although the collection is rela-
tively small compared with TREC, it

has a suitably complex XML struc-
ture(e.g., 192 different content models in
DTD). On average, an article contains
1,532 XML nodes, where the average
depth of a node i1s 6.9.

The overall structure of a typical ar-
ticle consists of a frontmatter, a body,
and a backmatter. The frontmatter con-
tains the article’s metadata, such as ti-
tle, author, publication information, and
abstract. The body is structured into
sections, subsections, and sub-subsections.
These logical units start with a title,
and contain a number of paragraphs, ta-
bles, figures, item lists, references, etc.
the backmatter includes a bibliography
and further information about the arti-

cle’s authors.

3. 3. 2 Topics

The topics are created by the partic-
ipating groups. Topics are two types:(1)
CAS(content-and-structure) and(2)
CO{content-only). Each group created a
set of candidate topics that were repre-
sentative of what real users might ask
and the type of the service that opera-
tional systems may provide.

The topic format and the topic devel-
opment procedure were based on TREC
guidelines, which were modified to al-
low for the definition of containment

conditions and target elements in CAS

198 MWEHRATIPAR G F21E H25% 2004

<Title>

<tedarticle/tg</te>
<ew>QBIC</cw> <ce>hibl</ee>
Lew>image retrieval</cw>
</Title>
<Beseription>.

and cite the image retrieval system QBIC
£/Description>
<Narrative>

</Narrative>
<Keywords>

</Keywords>
</INEX-Topic>

<INEX-Topic topic-id="05" query-type="CAS'>

Retrieve the title from all amcles Wknch deal w;kb mxage remevaI

To be relevant & document should deai wzth image retneval and aisa shouid cuntam(at‘ least)
one bibliographic reference to the ?etneval sysﬁem QBIC o

QBIC, IBM: image, video, content query remevai sysfﬁm

{Figure 5) Example of CAS topic from the INEX test coliection

queries. The overall structure of an
INEX topic consists of the standard ti-
tle, description, and narrative fields and
a new keywords field. Figure 5 shows
an example of a CAS topic. 60(30 for
CAS and 30 for CO) topics were se-
lected into the final set.

3. 3. 3 Tasks

The task is the ad-hoc retrieval of
XML documents. The answer to a
query is a ranked list of XML elements,
the top 100 elements of which is sub-
mitted as the retrieval result. The given
topics had to be decomposed and modi-
fied to be processed by the Xpath pro-
cessor in EXIMA™ Supply. The modi-

fied topics were expressed in one or

several Xpath queries. Some compli-
cated topics had to be decomposed into
several Xpath queries. During this proc-
ess of modification, the original mean-
ings of topics were changed inevitably
and some information was lost.

In set up the XML documents pro-
vided by INEX into EXIMA™ Supply,
the directory structure of XML docu-
ments was mapped into the logical
structure of EXIMA™ Supply. For ex-
ample, XML documents in “E\an\1995"
directory are stored in the folder “1995”
in the cabinet “an.”

Figure 6 shows the example storage
structure of EXIMA™ Supply shown in
EXIMA™ Manager.

Retrieval Performance of XML Documents using Object—Relational Databases 199

ht

§ EXIMA Supply
2 Ml
;6 =3
9% | BT
5 1997 i bt Rt — e
i
£ 1999 o o #:
.77 2000 &
1 2001 §§ Ay
8 K .
i) co %% ek
Pes . R] 0
LY dt g%
i) ex ix @ ow
B % @8
SERR
- E)ml :
113 mu At
- d y 22
i) so .
Sidte % = XML FF « XSL 27} « HEIR 48
-3 g
-3t § _
D« »3% » B0 4A + B8 88 > DTD g
&
y

(Figure 6) Example of the Storage Structure of EXIMA™ Supply

3. 4 Indexing

Two index schemes are well known
for structured documents: position based
indexing and path-based indexing to
access document collections by content,
structure, or attributes. In posi-
tion-based indexing, queries are proc-
essed by manipulating ranges of offsets
of words, elements or attributes. In
path-based indexing, the paths in tree
structures are used. Our storage method
of XML documents adopts both of two
indexing schemes and enjoys the ad-
vantages of them. XML processors
guarantee that XML documents stored
in databases follow tagging rules pre-
scribed in XML or conform to a DTD.

Hence, XML documents stored in data-
bases are valid or well-formed.

An XML document can be repre-
sented as a iree, and node types in the
tree are of the following three kinds:
Element, Attribute and Text. Nodes of
type Element have an element type
name as a label. Element nodes have
zero or more children. The type of each
child node is of one of the tree, that is,
Element, Attribute and Text. Nodes of
type Attribute have an attribute name
and an attribute value as a label.
Attribute nodes have no child node. If
there are plural attributes, the order of
the attributes is not distinguished. This
is because there is no order in XML

attributes. Nodes of type Text have

200 fEHUESEBEIE F2146 H29% 2004

character data specified in the XML
Recommendation as a label. Text nodes
have no child node.

We have the following policies for the

storage of XML documents:

- Database schemas should not de-
pend on DTDs or element types,
and databases shall store any XML
documents

- Index structures which are provided
in DBMSs shall be used

- Storage method shall be realized by
doing minimal extension to ob-
ject-relational databases

~ Functionalities of XML query lan-
guages shall be supported

EXIMA™ Supply has the function-
ality of indexing of elements of XML
documents. Especially, EXIMA™ Su-
pply makes indexes of elements when
an XML document is stored. Therefore,
it doesn’t need any extra indexing
process. Elements in one folder are in-
dexed together and the searching speed
is almost same among elements in one
folder. However, the indexing is done in
each folders, the searching speed may
be different from each folder.

3. 5 Retrieval process

XML documents are decomposed into

paths of their tree representation, and
stored in the four relations, that is,
Element, Attribute, Text and Path.
Their relational tables, in which XML
documents are stored, are hidden from
users or applications. Users or applica-
tion consider XML documents as trees,
and they specify queries in XML query
languages. XPath(XML Path Language)
was adopted in this experiment.

3. 5. 1 XPath query generation

XPath is a language for addressing
parts of an XML document, designed to
be used by both XSLT(Extensible Style-
sheet Language Transformation) and
XPointer(XML Pointer Language). XPath
is the result of an effort to provide a
common syntax and semantics for func-
tionality shared between XSLT and
XPointer. The primary purpose of XPath
is to address parts of an XML docu-
ment. In support of this primary pur-
pose, it also provides basic facilities for
manipulation of strings, numbers and
booleans. XPath uses a compact, non-
XML syntax to facilitate use of XPath
within URIs(Uniform Resource Identifiers)
and XML attribute values. XPath oper-
ates on the abstract, logical structure of
an XML document, rather than its sur-
face syntax. XPath gets its name from
its use of a path notation as in URLs

Retrieval Performance of XML Documents using Object—Relational Databases 201

for navigating through the hierarchical
structure of an XML document.

In addition to its use for addressing,
XPath is also designed so that it has a
natural subset that can be used for
matching(testing whether or not a node
matches a pattern).

XPath models an XML document as a
tree of nodes. There are different types
of nodes, including element nodes, at-
tribute nodes and text nodes. The pri-
mary syntactic construct in XPath is the
expression. An expression matches the
production Expr. An expression is eval-
uated to yield an object, which has one
of the following four basic types: (1)
Node-set(an unordered collection of no-
des without duplicates), (2) Boolean(true
or false), (3) Number(a floating—point
number), and (4) String(a sequence of
Universal Character Set characters).

Expression evaluation occurs with re-
spect to a context. XSL'T and XPointer
specify how the context is determined
for XPath expressions used in XSLT
and XPointer respectively. The context

Topic 01:

consist of: (1) a node(the context node),
(2) a pair of non-zero positive in-
tegers(the context position and the con-
text size), (3) a set of variable bindings,
(4) a function library, (5) the set of
namespace declarations in scope for the

expression.

EXIMA™ Supply supports XPath
searching functionality. Therefore, sear-
ching topics from INEX has to be con-
verted to XPath queries for searching
information. ‘/ is the child operator
which selects from immediate child
nodes. // is the descendant operator
which selects from arbitrary descendant
nodes. The ‘// can be thought of as a
substitute for one or more levels of
hierarchy. Also, in the query, filer clause
' T which is analogous to the SQL
WHERE clause, indexing which is easy
to find a specific node within a set of no-
des can be specified. All the INEX topics
were expressed in XPath in this stage.
For instance, topic 01 of INEX 2002 ex-

pressed in XPath queries as follows:

<?2xml version="1.0" encading="150-8859~1"7>

<Title>

<te>article/fm/au</te>
<cw>description logics</ew><ce>abs, kwd</ce>
</Title>

<IDOCTYPE INEX-Topic SYSTEM “inex-topics.dtd"™>
<INEX-Topic topic-id=“01" query-type="CAS” ct-no="010">

202 MEMATPLEBGIE W21% 2 2004

<Description>
Retrieve the names . of .authors of articles on description logic, in particular articles:in

which' the. abstract or the list of keywords contains a reference to description logic,

</Deseription>

<Narrative> :

" The rating should reflect the hkehness that a person is an expett on descnptron loglc’

</Narrative>>

<Keywords>

description logic' DL ABox TBox. reasoning

</Keywords> .

</INEX-Topic>

Xpath query:
! “article/fmlabs//*/text(*¥ contains{'description logic)/ au" , l

Complicated topics that can not be instance, topic 06 of INEX 2002 ex-
expressed in one XPath query can be pressed in XPath queries as follows:

divided into several XPath queries. For

Topic 06:

<7xml version="10" encodmg-—“ISO-S%S—I"%
<IDOCTYPE INEX-Topic SYSTEM ‘inex-topics.dtd”™>
<INEX-Topic topic-id=*06" qm*tyr)e"“CAS ct-no="034">
- <Title>
<te>tig</e>
<cw>Survey-on Software Engme&nng</cw>
<cw>
software enginecring ‘survey, pmgrammmg survey, progranumng tutanat
software engineering tutorial
<few>
- <ce>tig<fee> ' »
<ew>programming 1&nguages</ew><ce>sec</ce>
</Title> ,
<Description> . '
- Retrieve the article title from 321 articles. whwh are a tutmal or survey on SoftWare engineering of
programming dealing with programming }anguages . .
</Description>

<Narrative> . 4
~ To be relevant an amC}e shoxﬁeroffer a mmnak

</Narranve>
- <Keywords> :
survey, tutorial software engm‘
</Keywords> .~
</INEX-Topic>

Retrieval Performance of XML Documents using Object—Relational Databases 203

Xpath queries:

[contains(‘tutorial }1l/tg"

“articlel//tig//*/text(* [contains(‘Survey on Software Engineering’)]//tig”
“articlel//tig//*/text{* Mcontains{’ software WeontainsCengineering’)l{contains(‘survey’)]

“article[//sec//#/text(* Mcontains('programming) fcontains(Tanguages) 1V tig”

If a topic can not be expressed in
XPath queries, just keywords can use

for searching as an alternative approach.

3. 5. 2 Searching process of XPath
queries

The XPath queries processed as

shown in the following Figure 7. As the

following diagram illustrate, the given

XPath query is first parsed and then de-

composed into several sub-queries. And

based on these sub-queries, a query tree

that represents the hierarchical relation
of sub-queries is constructed. Once the
query tree is constructed, the tree is
traversed and evaluated to get the corre-
sponding nodes. The traversing of query
tree starts from the current context
element. The system first retrieves the
child elements of the current element as
candidate elements from storage. And
then the candidate elements are eval-
uated and elements that satisfy con-
ditions are added to the element-set. The

Parse XPath

I Decomposc XPath into sub-queries J

L Make an XPath Tree]

Traverse the XPath Tree and resolve sub-queries

——-P[Retricve nodes from XML DB j

Evaluate queries on
Retrieved nodes

L Add nodes to the clement-sct T

L—(If necessary, retricve child nodes

[Return the element-sct]

(Figure 7> Flow of query processing

204 THEERBEIEE B21E B2 2004

traversing is done recursively along to
the child nodes of the query tree. If all
nodes of the query tree are traversed and
evaluated, the element-set is returned as
the result of the search.

3. 6 Relevance assessments

For an XML test collection it is nec-
essary to obtain assessments for the
following two dimensions: (1) topical
relevance, which describes the extent to
which the in formation contained in a
document component is relevant to the
topic of the request, and (2) document
coverage, which describes how much of
the document component is relevant to
the topic of request.

To assess the topical relevance di-
mension, the following 4-point relevant
degree scale was adopted in INEX.

To assess the document coverage, the
following four dimensions has defined
which shown in Table 2.

The two dimensions are orthogonal to
each other, that is, relevance measures
the exhaustiveness aspect of a topic,
whereas coverage measures the specif-
icity of a document component with re-
gards to the topic. This means that a
document component can be assessed as
having exact coverage even if it only
mentions the topic of the request(mar-
ginally relevant) or discusses only some
of the topic’s sub-themes(fairly rele-
vant) as long as the relevant infor-
mation is the main or only theme of the
component. According to the above def-
initions, however, an irrelevant docu-
ment component should have no cover-

age and vice versa.

(Table 1> Assessment of the topical relevance dimension

0 | Irrelevant, the document component does not contain any information about the topic of the request

1 | Marginally relevant, the document component mentions the topic of the request, but only in passing

2 Fairly relevant, the document component contains more information than the topic description, but this information
is not exhaustive. In the case of multi-faceted topics, only some of the sub~themes or viewpoints are discussed

3 Highly relevant, the document component discusses the topic of the request exhaustively. In the case of
multi-faceted topics, all or most sub-themes or viewpoints are discussed

(Table 2> Assessment of the document coverage dimension

N | No coverage, the topic or an aspect of the topic is not a theme of the document component

L | Too large, the topic or an aspect of the topic is only a minor theme of the document component

Too small, the topic or an aspect of the topic is the main or only theme of the document component, but
the component is too small to act as a meaningful unit of information when retrieved by itself

Exact coverage, the topic or an aspect of the topic is the main or only theme of the document component,
and the component acts as a meaningful unit of information when retrieved by itself

Retrieval Performance of XML Documents using Object—Relational Databases 205

4. Results

Evaluation of the retrieval perforance
of the proposed retrieval enginesfol-
lowed the way of the INEX method
which is based on the constructed test
collection and uniform scoring techni-
ques, including Recall-Precision mea-
sures. The author only submitted the
results of CAS queries in INEX 2002.

Figure 8 presents Recall-Precision gra-

INEX 2002: ETRI_lncom

quantization: generalized; topics: CAS
average precision: 0.055
(empty topic results ignored)

0.8 L 1
§ o6} 1
]
8
& 0.4 R
0.2 [’ R
o]
[o] 0.5 1
Recall

Precision

phs for the evaluations results of the
subsets of CAS topics, i.e., #01, #04, #05,
#06, #11, #21. Applying the strict evalua-
tion gave slightly higher score(average
precision: 0.077) than the generalized
evaluation result(average precision:
0.055).

Our overall result, rather than empty
topic results ignored, showed relatively
poor(average precision: 0.019) as shown

in Figure 9.

INEX 2002: ETRI_lncom

quantization: strict; topics: CAS
average precision: 0.077
{empty topic results ignored)

08 1
06 | 1
0alf 1
o2}
o .
) 05 1

Recall

<{Figure 8) Recall-Precision Graph for(a) Generalized and(b) Strict CAS
topic ignored empty results

INEX 2002: ETRI_Incom

quantization: strict; topics: CAS
average precision: 0.019
rank: 34 (42 official submissions)

{Figure 9> Recall-Precision Graph for Overall Results and Rank

206 MEEATPEEE@IE B214E 25 2004

5. Conclusion

This paper described an object-rela-
tional DBMS approach for XML docu-
ments to measure the retrieval perform-
ance as a result of INEX participant.
Although the proposed approach has
many benefits, for example, no delay in
storing and searching XML documents,
it showed relatively poor performance in
overall evaluation among the partic-
ipants at INEX 2002.

This result may be caused since the
given topics had to be decomposed and
modified to be processed by the XPath
processor in EXIMA™ Supply, and dur-
ing this modification the original meaning
of topics can be changed inevitably and
some important information may missed.
Some other possibilities are that because
the system targets only for Korean and
no support for aid tools of indices con-
struction for INEX collection which will
be investigated in the future study.

On the other hand, the proposed sys-
tem lacks some of important information
retrieval features such as weighting of
search results, vague predicates to
measure similarity, relevance feedback
oriented search, semantic relativism
among different XML tags.

Information retrieval(IR) techniques
have traditionally been applied to search

large sets of textual data and should
thus be extended to encode the struc-
ture and semantics inherent in XML
documents. Integrating IR and XML
search techniques will enable more so-
phisticated search on the structure as
well as the content of these documents,
while leveraging the success of IR tech-
niques in document similarity ranking
and keyword search. Therefore ap-
proach to IR model, rather than DB
model or maybe need a hybrid model,
will be a good challenge. For example,
adopting ORDBMS model for storage of
XML documents and developing more
sophisticated retrieval engine for XML
documents. As Fuhr and GroBjohann
(2001) pointed out a query language for
the data-centric view should be very
much in the line of database query lan-
guages, whereas the document-centric
view should be supported by a language
that builds on concepts developed in the
area of information retrieval.

Acknowledgements

The author is grateful to Incom 1&C
Co. Ltd. whe kindly permitted to use
EXIMA™ Supply. Any opinion, finding,
or conclusion expressed in this paper
are those of the author, and do not nec-

Retrieval Performance of XML Documents using Object—Relational Databases 207

essarily reflect those of the sponsor.

References

Al-Khalifa, S., C. Yu and H.V. Jagadish
(2003). “Querying Structured Text
in an XML Database.” SIGMOD
2003, pp. 4-15. June 9-12, 2003,
San Diego, CA, USA.

Baeza-Yates, R, N. Fuhr and Y.S.
Maarek(2002). “Second Edition of
the XML and Information Ret-
rieval Workshop.” SIGIR Forum,
36(2): 53-57.

Bancihon, F., G. Barbedette, V. Ben-
zaken, C. Delobel, S. Gamerman,
C. Lecluse, P. Pfeffer, P. Richard
and F. Velez(1988). “The Design
and Implementation of 02, an
Object-oriented Database System.”
Proc. of the Second International
Workshop on Object-oriented
Database.

Carmel, D, YS. Maarek, M.
Mandelbrod, Y. Mass and A.
Soffer(2003). “Searching XML
Documents via XML Fragments.”
SIGIR 2003, pp. 151-158, July 28-
August 1, 2003, Toronto, Canada.

Carmel, D., Y. S. Maarek and A.
Soffer(2001). “XML and Infor-
mation Retrieval: a SIGIR 2000

Ceri,

Workshop.” SIGMOD Record,
30(1): 62-65.

S, P. Fraternai and S.
Paraboschi(2000). “XML: Current
Developments and Future Chall-
enges for the Database Com-
munity.” Proceedings of the 7°
International Conference on Ex-
tending Database Technology
(EDBT 2000), pp 3-17, Kon-
stanz, Germany.

Cheng, J., J. XU(2000). “XML and DB2.”

ICDE 2000, pp. 569-573.

Chinenyanga, T.T. and N. Kushme-

rick(2001). “Expressive Retrieval
from XML documents.” SIGIR
2001, pp.163-171, New Orleans,
Louisiana, USA.

Despotopoulos, Y., G. Patikis, J.

Soldatos, L. Polymenakos, J.
Kleindienst and J. Geric(2001).
“Accessing and Transforming
Dynamic Content based on XML:
Alternative Techniques and a
Practical Implementation.” In W.
Winiwarter, S. Bressan, and LK.
Ibrahim, editor, Third Interna-
tional Conference on Information

208 fEEREEEBEI H214 H25% 2004

Integration and Web-based App-
lications and Services(IIWAS
2001). Oster- reichische Comput.
Gesellschaft. 2001, pp. 95-105.
Wien, Austria.

Deutsch, A., M. Fernandez, D. Florescy,
A. Levy and D. Suciu(1999).
“XML-QL: A Query Language for
XML.” Proceedings of the In-
ternational WWW Conference.

and R. Elmasri(2001).
“Query Engines for Web-acces-
sible XML Data.” VLDB 2001, pp.
251-260.

Fernandez, M., D.F. Florescy, J. King,
A. Levy and D. Suciu(1998).
“Catching the Boat with Strudel:
Experiences with a Web-Site
Management System.” SIGMOD
Record, 27(2): 414-425.

Florescu, D. and D. Kossman(1999).
“Storing and Querying XML Data
using an RDBMS.” IEEE Data

Bulletin, 22(3):

Fegaras, L.

Engineering
27-34.
Fuhr, N.,, N. Goevert, G. Kazai, and M.
Lalmas(2002). “INEX: Initiative
for the Evaluation of XML Ret-
rieval.” ACM SIGIR Workshop
on XML and Information
Retrieval, August 2002, Tampere,
Finland.

Fuhr, N. and K. GroBjohann(2001).

“XIRQL: A Query Language for
Information Retrieval in XML
Documents.” SIGIR 2001, pp.
172-180, September 9-12, 2001,
New Orleans, Louisiana, USA.

Ha, S. and K. Kim(2001). “Mapping
XML Documents to the
Object-Relational Form.” ISIE
2001. 2001 IEEE International
Symposium on Industrial Elec-
tronics Proceedings. Part Vol 3,
2001, pp. 1757-61. Piscataway, NJ,
USA.

INEX homepage [Online] at:
http://qmir.dcs.gmul.ac.uk/INEX/

INEX {down, up} load area [Online] at:
http://1s6~www.cs.uni-dortmund.d
e/ir/projects/inex/download/

Jang, H., Y. Kim and D. Shin(1999). “An

 Effective Mechanism for Index
Update in Structured Documents.”
Proceedings of the 8" Internatio-
nal Conference on Information
Knowledge Management(CIKM
'99), pp. 383-390.

Kazai, G., M. Lalmas, N. Fuhr and N.
Govert(2004). “A Report on the
First Year of the Initiative for the
Evaluation of XML Retrieval:
INEX'02.” Journal of the Ameri-
can Society for Information
Science and Technology, 55(6):
551-556.

Retrieval Performance of XML Documents using Object—Relational Databases 209

Khan, L. and Y. Rao(2001). “A Perfor-
mance Evaluation of Storing XML
Data in Relational Database
Management Systems.” WIDM
2001, pp. 31-38, Atlanta, GA,
USA.

Kotsakis, E(2002). “Structured Infor-

Retrieval in XML

SAC 2002, pp.
663-667, Madrid, Spain.

Lee, YK, S.J. Yoo, K. Yoon and P.B.
Berra(1996). “Index Structures for
Structured Documents.” Proceed-
ings of the I ACM International
Conference on Digital Libra-
ries(DL "96), pp.91-99.

Manolescu, I, D. Florescuy, and D.
Kossmann(2001).
XML Queries Over Heterogene-
ous Data Sources.” VLDB 2001,
pp. 241-250.

McHugh, J., S. Abiteboul, R. Goldman,
D. Quass, J. Widom(1997). “Lore:
A Database Management System
for Semi-structured Data.”
SIGMOD Record, 26(3): 54-66.

Miller, J. A. and S. Sheth(2000).
“Querying XML documents.”
IEEE Potentials, 19(1): 24-26.

Moffat, A. and J. Zobel(1996).
“Self-Indexing Inverted Files for
Fast Text Retrieval” ACM
Trans. Inf. Sys, 14(4): 349-379.

mation

documents.”

“Answering

Navarro, G. and R. Baeza-Yates(1997).
“Proximal Nodes: A Model to
Query Document Databases by
Content and Structure.” ACM
Trans. Inf Sys, 15(4): 400-435.

Oraclee. “The New XML Type
Datatype.” [Online] at:
http://otn.oracle.com/products/ora
cle9i/daily/nov08.html

Schmidt, A., M. Kersten, M. Wind-
houwer, F. Wass(2001). “Efficient
Relational Storage and Retrieval
of XML Documents.” Lecture
notes in Computer Science, no.
1997: 137-150.

Shanmugasundaram, J.,, K. Tufte, C.
Zhang, G. He, D.J. DeWitt and
JF. Naughton(1999). “Relational
Databases for Querying XML

Documents: Limitations and
Opportunities.” VLDB, D
302-314.

Shin, D(2001). “XML Indexing and
Retrieval with a Hybrid Storage
Model.” Knowledge & Informa-
tion Systems, 3(2). 252-261.

Tian, F., D. DeWitt, J. Chen and C.
Zhang(2002). “The Design and
Performance Evaluation of Alter-
native XML Storage Strategies,”
SIGMOD Record, 31(1): 5-10.

Varlamis, 1. and M. Vazirgiannis(2001).

“‘Bridging XML-Schema and

210 EHETEE H21E H25% 2004

Relational Databases: A System
for Generating and Manipulating
Relational Databases using valid
XML Documents.” DocEng’Ol,
pp. 105-114, November 9-10, 2001,
Atlanta, Georgia, USA.

Vieira, H.,, G. Ruberg and M. Mattoso

(2003). “XVerter: Querying XML
Data with OR-DBMS.” WIDM
2003, pp. 37-44, November 7-8,
2003, New Orleans, Louisiana,
USA.

W3C Document Object Model. [Online]

at: http://www.w3.org/DOM

W3C XPath. [Online] at:

http://www.w3.org/TR/xpath

Zhang, C., J. Naughton, D. DeWitt, O.

Luo and G. Lohman(2001). “On
Supporting Containment Queries
in Relational Database Manage-
ment Systems.” ACM. SIGMOD
2001, pp. 425-436, May 21-24,
2001, Santa Barbara, CA, USA.

