DOI QR코드

DOI QR Code

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems

불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별

  • Published : 2004.05.01

Abstract

We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

Keywords

References

  1. S. Arimoto, S. Kawamura and F. Miyasaki, 'Bettering operation of robots by learning', J. Robot. Syst., vol. 1, no. 2, pp. 123-140, 1984 https://doi.org/10.1002/rob.4620010203
  2. S. Arimoto, 'Learning control theory for robotic motion', Int. J. Adaptive Control Signal Processing, vol. 4, pp. 543-564, 1990 https://doi.org/10.1002/acs.4480040610
  3. T. Sugie and T. Ono, 'An iterative learning control law for dynamical systems', Automatica, vol. 27, no. 4, pp. 729-732, 1991 https://doi.org/10.1016/0005-1098(91)90066-B
  4. T. Y. Kuc, J. S. Lee and K. Nam, 'An iterative learning control theory for a class of nonlinear dynamical systmes', Automatica, vo.l. 28, no. 6, pp. 1215-1221, 1992 https://doi.org/10.1016/0005-1098(92)90063-L
  5. Z. Qu, J. Dorsey, D. M. Dawson and R. W. Johnson, 'Linear learning control of robot motion', J. Robot. Syst., vol. 10, no. 1, pp. 123-140, 1993 https://doi.org/10.1002/rob.4620100107
  6. T. J. Jang, C. H. Choi and H. S. Ahn, 'Iterative learning control in feedback systems', Automatica, vol. 31, no. 2, pp. 243-248, 1995 https://doi.org/10.1016/0005-1098(94)00064-P
  7. B. H. Park, T. Y. Kuc and J. S. Lee, 'Adaptive learning control of uncertain robotic systems', Int. J. Control, vol. 65, no. 5, pp. 725-744, 1996 https://doi.org/10.1080/00207179608921719
  8. W. G. Seo, B. H. Park and J. S. Lee, 'Intelligent learning control for class of nonlinear dynamics systems', IEE proc. Control Theory Appl., vol. 146, no. 2, pp. 165-170, 1999 https://doi.org/10.1049/ip-cta:19990520
  9. M. French and E. Rogers, 'Nonlinear iterative learning by an adaptive lyapunov technique', Proceedings of the 37th conference on Decision and control, Florida, USA, pp. 175-180, 1998 https://doi.org/10.1109/CDC.1998.760617
  10. J. -Y. Choi, and J. S. Lee, 'Adaptive iterative learning control of uncertain robotic systems', IEEE proc. Control Theory Appl., vol. 147, no. 2, pp. 217-223, 2000 https://doi.org/10.1049/ip-cta:20000138
  11. F. L. Lewis, C. T. Abdallah and D. M. Dawson, Control of robot manipulators, Macmillan, New York, 1993
  12. W. Rudin, Principles of mathematical anaysis, 3rd edn., McGraw-Hill, New York, 1976