26

Hong-Won Yun : Ontology Versions Management on the Semantic Web

Ontology Versions Management on the
Semantic Web

Hong-Won Yun, Member, KIMICS

Abstract—In the last few years, The Semantic Web
has increased the interest in ontologies. Ontology is an
essential component of the semantic web. Ontologies
continue to change and evolve. We consider the management
of versions in ontology. We study a set of changes based
on domain changes, changes in conceptualization, metadata
changes, and temporal dimension. In many cases, we
want to be able to search in historical versions, query
changes in versions, retrieve versions on the temporal
dimension. In order to support an ontology query language
that supports temporal operations, we consider temporal
dimension includes transaction time and valid time.
Ontology versioning brings about massive amount of
versions to be stored and maintained. We present the
storage policies that are storing all the versions, all the
sequence of changed element, all the change sets, the
aggregation of change sets periodically, and the
aggregation of change sets using a criterion. We conduct
a set of experiments to compare the performance of each
storage policies. We present the experimental results for
evaluating the performance of different storage policies
from scheme 1 to scheme 5.

Index Terms—Ontology, Version Management, Semantic
Web, Storage Policy

I. INTRODUCTION

Semantic Web has been presented as the next step in
the evolution of the World Wide Web. Research on
ontology is becoming increasingly widespread in the
computer science community. Ontologies have also
become important in the Semantic Web. Purposes of
ontology on the web are making the knowledge about a
particular domain explicit, sharing and reusing this
knowledge, and analyzing domain knowledge. Ontology
development is still difficult and time-consuming.

Ontology is an explicit specification of a conceptualization
of a domain. Ontologies are often seen as basic building
blocks for the Semantic Web. Ontologies continue to
change and evolve over time. A major change in ontologies
are caused by domain changes and concept changes.
Domain changes and concept changes in the shared
conceptualization require modifications of the ontology.
The causes of changes are classified as changes in the
domain, changes in conceptualization, or changes in the

Manuscript received February 17, 2004.

This article was supported by the research grant 2002 of Silla
University. Hong-Won Yun is Associate Professor in Silla University,
Busan, Korea.(Tel: +82-51-999-5065; e-mail: hwyun@silla.ac.kr)

explicit specification [1-7].

Ontology versioning is related to changes in ontologies.
More properly, an ontology versioning consists in a
collection of ontology versions. in general it can be said
that there is a lack of methods managing ontology. To
understand the problem of reusing and evolving ontologies
in the Semantic Web, we consider the management of
versions in ontology. In this paper, we study a set of
changes based on domain changes, changes in conceptualization,
metadata changes, and temporal dimension. We use the
two most common aspects are valid time and transaction
time in order to support a temporal ontology query.

Ontology versioning brings about massive amount of
versions to be stored and maintained. To management
massive data, efficient storage policies are necessary.
Some of version management methods have been developed,
these methods can be used to manage versions in
different document models. These schemes are unlikely
to be appropriate for ontology versions management. We
propose several storage policies for ontology versions
management and evaluate them.

The rest of the paper is organized as follows. Section 2
introduces updates and changes in ontologies. Section 3
describes the change specification considering time
dimension. Section 4 presents several storage policies for
ontology versions management. Our experimental results
are described in Section 5. Conclusions can finally be
found in Section 6.

II. ONTOLOGY CHANGE

One widely cited definition of an ontology is Gruber’s
[6]. According to Gruber [6], an ontologies is a
specification of a shared conceptualization of a domain.
Ontologies continue to change and evolve. In [4],
Changes in ontologies are caused by either: changes in
the domain, changes in the shared conceptualization, or
changes in the specification. In [8, 9], It is stated that an
ontology has classes, class hierarchy, instances of classes,
slots as first-class objects, slot attachments to class to
specify class properties, and facets to specify constraints
on slot values. Those elements involve ontology change.

Wiederhold [10] describes four types of domain
differences: (1) terminology: different names are used
for the same concepts, (2) scope: similar categories may
not match exactly; their extensions intersect, but each
may have instances that cannot be classified under the
other, (3) encoding: the valid values for a property can
be different, even different scales could be used, (4)
context: a term in one domain has a completely different
meaning in another.

International Journal of KIMICS, Vol. 2, No. 1, March 2004

27

OntoView [11] is the ability to compare ontologies at a
structure level. OntoView have the comparison function
distinguish between the following types of change: non-
logical change, logical definition change, identifier
change, addition of definitions, deletion of definitions.
OntoView deal with four types of change.

The research in ontologies started with defining what a
formal ontology, shifted to the development of representation
languages, and developed the method of evolution and
versioning [7]. The complexity of ontology evolution
increases as ontologies change and evolve, so a systematic
ontology management is required.

We examine a number of ways to represent these
change information for an ontology versions. A number
of research works were done on ontology change, whereas
through studies concerning change specification are still
lacking. In this paper, we deal with the change specification
in an ontology versioning, also taking into account
temporal dimension aspects.

Large ontologies are essential components in web
service systems. As ontologies become larger and longer
lived, an amount of versions to be stored and maintained
become massive volume. We will study the storage
policies using the change specification. Change sets are
used as logs in database to maintain versioned data, so
we will show a proper policy taking into account both
performance and storage space usage. Also, we present
the experimental results for evaluating the performance
of different storage policies.

I1. CHANGE SPECIFICATION

In this section, we introduce a change specification for
changes in ontologies. Our change specification is
represented by a set of changes. We assume that a set of
changes consists of instance data change, structural change,
identifier change, meta data change, and temporal dimensions.
Instance data change in ontology is comparable to update
in database instances, e.g., change of a class properties,
update of a slot values or restrictions, etc. Structural
changes occur when classes are added, removed or moved.
Identifier change means a rename of element in an ontology.
Meta data describes comments about the change. Temporal
dimension includes transaction time and valid time.

The valid time of a fact is the time when the fact is
true in the modeled reality. A fact may have associated
any number of instants and time intervals, with single
instants and intervals being important special cases. A
database fact is stored in a database at some point in time,
and after it is stored, it is current until logically deleted.
The transaction time of a database fact is the time when
the fact is current in the database and may be retrieved [12].

To formally represent a set of changes, we use the
symbols as following:

e D : instance data change
o §: structural change

o | : identifier change

® M : meta data change

o 7': temporal dimensions

We define that a set of changes contains four elements
are related to change and time dimension 7.

eC=(DuSuluM)oT

Suppose C, is a set of changes for »™ and V,, is a
version for #. A set of changes C,,;applied to V, that
result in V,.,, ie. V,.; = V, o C,.;. Figure 1 shows a
relation between versions and change sets. In figure 1, C,
or C, means a set of changes. D and S mean that instance
data change and structural change occurred respectively.
For instance, we can apply C; to Version 0 and then we
can produce Version 1. C; contains a list of specific
operations related to instance data change. C; contains a
list of structural change operations.

A - AL N
NN /)O/\ g\)/

Ver 0 Ver 1 Ver 2

Fig. 1 Relation between version and change set.

Table 1 shows list of change sets. In table 1, an Eid
identifies uniquely a particular element in an ontology.
The changing object is described with ObjectName. The
temporal dimension is the core of ontology versioning to
support the temporal query. The temporal dimension
includes valid time and transaction time as following:

o I'={ Eid vt, 1t }
(1) vt =[valid_start_time, valid_end time]
(2) 1= transaction_start_time, transaction_end_time |

Table 1 List of change sets

Category | Set of change
Instance = { Eid, ObjectName, OperationName,
data change | OldValue, NewValu e}
Structural = { Eid, OperationName, OldName,
change NewName }
Identifier = { Eid, OperationName, OIldEid,
change NewEid }
Meta data = { FEid, ObjectName, OperatioName,
change OldValue, NewValue }
d.Tempf’ral T={Eid vt 1t}
imensions

The time dimension naturally has hierarchy as year,
month, week, and day. Here we have years as the
coarsest granularity and days as the finest granularity.

Table 2 gives operations and semantics the corresponding
to OperationName in the change sets. In Table 2, e is an
identifier Eid, nv is a new value after update and ov is an
old value previous update.

28

Hong-Won Yun : Ontology Versions Management on the Semantic Web

Table 2 Basic operations and semantics in change sets

Operations Semantics
UpdateValue (e, ny, Modifies ov the instance of the element
ov) etony

Deletes the instance of the element ¢
Inserts av the instance of the element
Renames oe the name of the element to ne
Moves the value in the class p to be the

value of class of e in position #
Creates a superclass e in position n
Moves the class rooted in the class p to
be the class of ¢ in position n
Deletes the class rooted in the class e
Inserts the class C as a subclass of the
class e in position n
Merges the class ¢, and the class ¢,
results in the class rooted in the class e
Divides the class ¢ into the class e, and
the class e,, and inserts each class in
position n;, 1
Renames oe the identifier of class to ne

DeleteValue (e)
InsertValue (e, nv)
RenameValue e, ne, oe)

MoveValue (e, n,p)

CreateClass (e,n,p)

MoveClass (e, n,p)
DeleteClass (e)

InsertClass (e, n,C)

UnionClass (e, e,, e5)

DivideClass (e. e}, e,
ny, 1)

Renameld (e, ne, 0e)

As we mentioned previous, a version is represented by
change sets. In order to generate a version from another
one, we maintain change sets. To generate a particular
version, change sets are applied to previous stored
version. A set of changes has temporal dimension to
process temporal queries. Examples of temporal queries
are: what are the product’s names update since time #?
When did the car Hyundai Elantra add the directory? The
way for querying the history is to search change sets
includes that information and reconstruct the version.

IV. STORAGE POLICIES

In previous section, we described the change
specification for changes in ontologies. We discuss the
storage policies of versioned data in this section. We
need to store the first version in the ontology repository s
well as the last version. The first version can be used to
create particular version. Several storage policies may be
considered as following:

e Scheme 1 — Storing all the versions

o Scheme 2 — Storing all the sequence of changed
elements

e Scheme 3 — Storing all the change sets

e Scheme 4 — Storing the versions and the aggregation
of change sets periodically

e Scheme 5 — Storing the versions and the aggregation
of change sets using a criterion

Scheme 1 is that all the snapshots of the ontology are
stored in the storage. This scheme is required lots of storage
space. There is no additional processing overhead to
generate queried versions. Similar this scheme is already
proposed to manage versions in different document
representation models. We use it to compare with other
schemes. Scheme 2 is the policy that stores only changed

elements, e.g., store a history of an ontology. This storage
policy use linked list to maintain versioned data. To process
temporal query in this scheme, it is needed to search a
link. It is not required to generate any historical versions.

Whenever versions are created, scheme 3 stores previous
the sequence of change but not versions. The sequence of
change sets from the earliest versions to the current
versions is stored. To access to historical information, this
scheme need to generate the versions. We can aggregate
the change sets periodically and store them. Scheme 4
stores the aggregation of change sets and the versions
periodically. Aggregations of change sets are obtained
via dividing all the sequence of change sets periodically.

Also, we can divide the sequence of change set not a
period but a criterion. Above the fifth policy means that
each versions and change sets are stored using a criterion.
Scheme 5 stores the versions created when the most
update operations within a period are occurred. The
criterion is determined based on a number of update
operations. This scheme can reduce the version creation
time when temporal queries are requested.

l Ver; - Vefpig Verpd;

oW

orig

Chg, Chgio Chgy-1

Fig. 2 Scheme of storing all the change sets.

Fig.2 shows the storage policy concept of storing all
the change sets. The originated version and the last version
(current version) are stored in the storage. Also, A change
set is stored whenever a version is generated. However,
Versions those are between the originated and the current
version, they are not stored. In Figure2, Chg, means a set
of change. A version is represented by an entity: (Ver,,
Chg)). Ver,.; o Chg; generate Ver,;, i.e., Ver; is generated
by applying Chg; to Ver.,. If only generating versions
must start from the originated version. Here origin is a
fixed time specifying the creation time of the particular
ontology and now corresponds to the current time.

Fig. 3 Stored versions and change sets in Scheme 3.

Sequence of stored versions is shown in Figure 3.
Scheme 3 stores the first version, the last version and just
change sets. Applying Chg, to Ver, generates Ver,, i.e.,
Ver,= Ver,o Chg,. Also, We can get Ver, applying Chg,
to result of Ver, o Chg,, i.e., Ver,=(Ver, o Chg;) o Chg,.

Ver; Ver;gp Verp-19 -

orig | oW
Savy e . Sawvy o

Chgy-y Chgy

T

Ch hg:
[the aggreggaltinn of hm?gegéetsL]
Fig. 4 Scheme of storing the versions the aggregation of
change sets periodically.

International Journal of KIMICS, Vol. 2, No. 1, March 2004

29

Above we mentioned scheme 4 that is the versions and
the aggregation of change sets periodically, in this scheme,
we store a particular versions and an aggregation of
changes sets periodically in the repository. Figure 4
shows scheme of this storage policy. The storing period
can become the time granularity. At this scheme we use
an aggregation of change sets, which means to group by
the granularity. We have a 4-level time hierarchy: year,
month, week, and day. Here we have days at the finest
granularity. Change sets can be grouped in days, weeks,
months, or years, and then stored in the repository. In
this figure, we assumed the storing period is 10 that is
constant. Here Ver, is virtual version that is not stored
physically and Ver,, is stored version. The Chg; is the
aggregation of change sets that aggregates all change sets
before Ver,, from origin to Sav,. The versioned data
Ver,, and the aggregation of change sets Chg, are stored
in the repository at point with time Sav,. We assume that
Ver,.; is not stored physically as virtual version, and then
Ver, is reconstructed with the aggregation of change
sets before Ver,.; from time Sav,.; to time Sav,.;.

Fig. 5 Stored versions and change sets in Scheme 4.

Scheme 4 stores versions and change sets as shown in
Fig. 5 All versions between Ver, and Ver, are generated
by applying Chg; to Very. Also, applying Chg, to Ver,,
generates all versions between Ver;, and Ver,. To
generate a particular version, a change set is applied to

it’s a previous version. -
cnt{dl) cnt(d;,l)...cnt(di) cnt(d|.+ Do gl’lt(dK)

g
Y rl‘Ter,, Vgrn 1
Dhy,
onth, Monthq Month,

Fig. 6 Scheme of storing the versions and the aggregation of
change sets using a criterion.

The storage policy that is storing the versions and the
aggregation of change sets using a criterion is shown in
Figure 6. The basic idea of this storage policy is to get
maximum number of update operations. The maximum
value corresponds to specific time, which is a criterion to
store a version. To get the criterion, we execute the count
function a day during a month and get the maximum
value from all the count value. Here cnt is a count
function to get a number of update operations and crit; is
a maximum value corresponding to specific time. If
cnt(ds) is a maximum value in this figure, crit; becomes
a criterion to store a particular version Vers. Just a
version is stored at a time instant corresponding a
criterion. Other versions are not stored physically during
time granularity except a version that corresponds to a

criterion; only aggregations of change sets are stored.

Fig. 7 Stored versions and change sets in Scheme 5.

Figure 7 shows stored versions and change sets in
Scheme 5. In order to reduce the version generation time,
we need to get a version that has a maximum value of
update operations during time granularity. For example,
Vers has a maximum value of update operations. Vers is
already stored in repository, we don’t need to generate it.
A lot of processing time to need for generating Vers is
saved.

Algorithm 1 Storing the versions and the aggregation
of change sets periodically

1. Decide time granularity granul for storing change
sets.

2. For the nearest time Sav, creating version from
specific period granul.

3. Store change sets Chg; from Sav; ; to Sav,.

4, Store versions created at the time Sav,.

Algorithm 2 Storing the versions and the aggregation
of change sets using a criterion

1. Decide time granularity granu/ for storing change
sets.

2. When current time is the time corresponding to
granul.

3. Count number of update operations for each version
generation time.

4. Get a maximum value as criterion for above No.3

Mentioned above two storage policies, Scheme 4 and
5, respectively, the algorithm for storing the versions and
the aggregation of change sets is presented in Algorithm
1 and 2.

V. PERFORMANCE EVALUATIONS

In this section, we present the experimental results for
evaluating the performance of the five storage policies
described in Section 4. We compare the storage space
usage and the average access time of the five schemes.
We use the following experimental settings:

- A size of 100Megabytes for ontology

- A lifespan of 365 for simulation interval

- 50% current queries, 50 % past queries

Figure 8 shows the storage space usage according to
changing change set size. The size of change set varies
from 5% to 45% of the ontology size. We can see that
Scheme 3 has the least storage usage. This is due to the
fact that Scheme 3 just stored change sets between the
first version and the last version. However, we can see
that Scheme 1 consumes the largest space because all
versions are stored. Scheme 4 and Scheme 5 have similar

30

Hong-Won Yun : Ontology Versions Management on the Semantic Web

storage space usage, because they store versions and
change sets in turn, Difference of the storage space usage
among Scheme 3, Scheme 4, and Scheme 5 is small. The
Scheme 4 and the Scheme 5 uses a little more space than
the Scheme 3.

Scheme 1j
M Scheme2
OScheme3
O Scheme4
M Scheme5

storage space

5% 15% 25% 35% 45%
size of change set J

Fig. 8 Storage space usage.

@) —4&— Schemet
g,a 150000 —— Scheme?
& £ 100000 |~ Schemed |
% % 50008 l+Scheme4}
5 | —¢—Schenes |
4]

Q L :
S & o |

number of queries

Fig. 9 Average access time.

Figure 9 shows the average access time for the five
schemes. We can see that Scheme 3 has the largest average
access time and Scheme 1 has the smallest one. The
average access time in Scheme 1 increases rapidly as the
number of queries increases. This is due to that Scheme
3 needs very much versions creation time because it just
stored change sets. On the other hand, Scheme 1 does not
need versions creation time because it stored all the
versions. In Figure 8 and Figure 9, we can see that Scheme
5 has less storage space usage and less access time. Scheme
5 is a steady storage policy on both space and time sides.

VI. CONCLUSIONS

In this paper we described about the management of
versions in ontology. We have studied a set of changes
based on domain changes, changes in conceptualization,
metadata changes, and temporal dimension. Our change
specification is represented by a set of changes. A set of
changes consists of instance data change, structural change,

identifier change, meta data change, and temporal dimensions.

In order to support an ontology query language that supports
temporal operations, we considered temporal dimension
includes transaction time and valid time. Ontology versioning
brings about massive amount of versions to be stored and
maintained. We discussed several storage policies of
versioned data: Storing all the versions, Storing all the
sequence of changed elements, Storing all the change
sets, Storing the versions and the aggregation of change
sets periodically, and Storing the versions and the

aggregation of change sets using a criterion. Also, we
presented the experimental results for evaluating the
performance of different storage policies from scheme 1 to
scheme 5. More experiments are planned for the near future.

REFERENCES

[1] T. Berners-Lee (with Mark Fischetti), Weaving the
Web, The original design and ultimate destiny of the
World Wide Web, Harper, 1999.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, The
Semantic Web: A new form of Web content that is
meaningful to computers will unleash a revolution of
new possibilities, Scientific American, May 2001.

[3] N. Guarino, “Formal Ontology in Information Systems,”
Proc. of the 1st International Conference, Trento,
Italy, 6-8 June 1998.

{4] M. Klein and D. Fensel, “Ontology versioning for the
Semantic Web,” In Proceedings of the International
Semantic Web Working Symposium (SWWS), pages
75-91, Stanford University, California, USA, 2001.

[5] N. F. Noy, “Ontology Engineering,” In Proceedings
of the International Semantic Web Working Symposium
(SWWS), page 2, Stanford University, California, USA.

[6] T. R. Gruber, “A translation approach to portable
ontology specifications,” Knowledge Acquisition,
5(2), 1993.

[7]1 N. F. Noy and M. Klein. “Ontology evolution: Not
the same as schema evolution,” Knowledge and
Information Systems, 5, 2003. in press.

[8] N. Noy and M. Musen, “PROMPTDIFF: A fixed-
point algorithm for comparing ontology versions,” In
18th National Conference on Artificial Intelligence
(AAAI2002), 2002.

[9] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp,
and J. P. Rice, “OKBC: A programmatic foundation
for knowledge base interoperability,” In 15th Nat.
Conf. on Artificial Intelligence (AAAI-98), pages
600-607, 1998.

f10] G. Wiederhold, “An Algebra for Ontology
Composition,” In Proceedings of 1994 Monterey
Workshop on Formal Methods, pages 56-62. U.S.
Naval Postgraduate School, 1994.

[11] M. Klein, A. Kiryakov, D. Ognyanov, and D. Fensel,
“Ontology Versioning and Change Detection on the
Web,” In 13th International Conference on
Knowledge Engineering and Knowledge Management
(EKAWO02), Sigiienza, Spain, October 1-4, 2002.

[12] C. S. Jensen, C. E. Dyreson, (Eds.), M. B ohien, J.
Clifford, R. A. Elmasri, S. K. Gadia, F. Grandi, P.
Hayes, S. K. Jajodia, W. K afer, N. Kline, N.
Lorentzos, Y. Mitsoupoulos, A. Montanari, D.
Nonen, E. Peressi, B. Pernici, J. F. Roddick, N. L.
Sarda, M. R. Scalas, A. Segev, R. T. Snodgrass, M.
D. Soo, A. U. Tansel, P. Tiberio, G. Wiederhold,
The Consensus Glossary of Temporal Database
Concepts - February 1998 Version, in: O. Etzion, S.
Jajodia, S. Sripada (Eds.), Temporal Databases—
Research and Practice, Springer-Verlag, 1998,
pages 367405, INCS No. 1399.

International Journal of KIMICS, Vol. 2, No. 1, March 2004

31

[13] J. Heftin and J. A. Hendler, “Dynamic ontologies on
the web,” In Proc. of AAAI/IAAI 2000, pages 443-
449, 2000.

[14] A. Marian, S. Abiteboul, G. Cobena, L. Mignet,
“Change-Centric Management of Versions in an
XML Warehouse,” In Proc. of 27th Int. Conf. on
Very Large Data Bases (VLDB). pages 581-590,
2001.

[15] S. Y. Chien, V. J. Tsotras, C. Zaniolo, “XML Document
Versioning,” SIGMOD Record 30, pages 46 — 53,
2001.

{16] B. Benatallah, M. Mahdavi, P. Nguyen, Q. Z. Sheng,
L. Port, B. Mclver, “An Adaptive Document Version
Management Scheme,” The 15th Conference on
Advanced Information Systems Engineering
(CAISE'03), pages 16-20, Austria, 2003.

{17] A. Maedche, B. Motik, L. Stojanovic, R. Studer, R.
Volz, “An Infrastructure for Searching, Reusing and
Evolving Distributed Ontologies,” WWW2003,
Hungary, 2003.

(18] L. Deborah, McGuinness, R. Fikes, J. Rice, S.
Wilder. “An Environment for Merging and Testing
Large Ontologies,” In Proceedings of the Seventh
International Conference on Principles of Knowledge
Representation and Reasoning (KR2000), Colorado,
2000.

Hong-Won Yun

Received his B. S. and the Ph.D.
degrees in Department of Computer
Science from Pusan National
University, Pusan, Korea, in 1986
and 1998, respectively. From 1996
to now, he is an Associate Professor,
Division of Computer & Information
Engineering, Silla University in Korea. His research
interests include Semantic Web, Temporal Database.

