Abstract
The 3D tooth model in which each tooth can be manipulated individualy is essential component for the orthodontic simulation and implant simulation in dental field. For the reconstruction of such a tooth model, we need an image segmentation algorithm capable of separating individual tooth from neighboring teeth and alveolar bone. In this paper we propose a CT image normalization method and adaptive optimal thresholding algorithm for the segmenation of tooth region in CT image slices. The proposed segmentation algorithm is based on the fact that the shape and intensity of tooth change gradually among CT image slices. It generates temporary boundary of a tooth by using the threshold value estimated in the previous imge slice, and compute histograms for the inner region and the outer region seperated by the temporary boundary. The optimal threshold value generating the finnal tooth region is computed based on these two histogram.
치과 분야에서는 치아교정이나 수술 시뮬레이션을 위해서 각 치아를 개별적으로 조작할 수 있는 3차원 치아모델이 필요하다. 치아 CT 영상으로부터 이러한 치아모델의 재구성을 위해서는 각 치아를 이웃한 치아나 치조골로부터 정확하게 분리할 수 있어야 한다. 본 연구에서는 치아 영역을 효과적으로 분리하기 위한 영상정규화 방안과 최적임계화방안을 제안한다. 제안된 방법은 연속적인 CT 영상 슬라이스들에서 치아영역의 형태와 밝기는 점진적으로 변한다는 사실을 근거로 이전 슬라이스에서 추정된 임계치를 이용하여 현 슬라이스의 임시치아경계를 결정하고 이것을 바탕으로 보다 정확한 임계치를 계산한다.