Manipulation of Single Cell for Separation and Investigation

  • Arai, Fumihito (Department of micro/Nano System Engineering, Nagoya University) ;
  • Ichikawa, Akihiko (Department of micro/Nano System Engineering, Nagoya University) ;
  • Maruyama, Hisataka (Department of micro/Nano System Engineering, Nagoya University) ;
  • Motoo, Kouhei (Department of micro/Nano System Engineering, Nagoya University) ;
  • Fukuda, Toshio (Department of micro/Nano System Engineering, Nagoya University)
  • 발행 : 2004.06.01

초록

Recently, high throughput screening for microorganisms with desired characteristics from a large heterogeneous population has become possible. Single cell separation has taken on increasing significance in recent years, and several different methods have been proposed so far. In this paper, we introduce several cell manipulation methods aiming at single cell separation and investigation. At first, methods for the separation of microorganisms are classified. Then, we introduce two different approaches, that is, (1) indirect manipulation using laser trapped microtools and (2) thermal gelation.

키워드

참고문헌

  1. Microbiological Review v.59 no.1 Phylogenetic identification and in situ detection of individual microbial cells without cultivation R. I. Amann;W. Ludwig;K. -H. Schleifer
  2. Acta Biotechnol. v.21 Review: Single-cell sorting of microoranisms by flow or slide-based (including laser scanning) cy-tometry T. Katsuragi;Y. Tani https://doi.org/10.1002/1521-3846(200105)21:2<99::AID-ABIO99>3.0.CO;2-X
  3. 2002 Intl. Symp. on Micromechartonics and Human Science Isolation and extraction of target microbes for bio-microlaboratory F. Arai;A. Ichikawa;T. Sakami;H. Maruyama;Y. Fukuda
  4. Flow Cytometry and Sorting M. R. Melamed;T. Lindmo;M. L. Mendelsohn
  5. Proc. IEEE Micro Electro Mechanical Systems Linear motion of dielectric particles and living cells in microfabricated structures induced by travelling electric fields G. Fuhr;R. Hagedorn;T. Mueller;B. Wagner;W. Benecke
  6. J. of Electrostatics v.47 Paired microelectrode system, dielectrophoretic particle sorting and force calibration T. Schnelle;T. Mueller;G. Gradl;S. G. Shirley;G. Fuhr https://doi.org/10.1016/S0304-3886(99)00032-7
  7. Proc. of the Micro Total Analysis Systems 1998 (μ-TAS1998) Rare event cell sorting in a microfluidic system for application in prenatal diagnosis A. Wolff;U. D. Larsen;G. Blankenstein;J. Philip;P. Telleman
  8. J. Micromech. Microeng. v.12 Development of a microfluidic device for fluorescence activated cell sorting J. Krueger;K. Singh;A. O'Neill;C. Jackson;A. Morrison;P. O'Brien https://doi.org/10.1088/0960-1317/12/4/324
  9. Experimental Cell Research v.249 Laser-scanning cytometry: A new instrumentation with many applications Z. Darzynkiewicz;E. Bedner;X. Li;W. Gorczyca;M. Melamed https://doi.org/10.1006/excr.1999.4477
  10. Analytica Chimica Acta v.365 no.1-3 Screening of single escherichia coli in microchannel by electric field and laser tweezers K. Morishima;F. Arai;T. Fukuda;H. Matsuura;K. Yoshikawa https://doi.org/10.1016/S0003-2670(98)00091-9
  11. Proc. of IEEE Micro Electro Mechanical Systems High speed random separation of microobject in microchip by laser manipulator and dielectrophoresis F. Arai;M. Ogawa;T. Fukuda;K. Horio;T. Sone;K. Itoigawa;A. Maeda
  12. Electrophoresis v.22 no.2 High speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis F. Arai;A. Ichikawa;T. Fukuda;K. Horio;K. Itoigawa https://doi.org/10.1002/1522-2683(200101)22:2<283::AID-ELPS283>3.0.CO;2-C
  13. Journal of Robotics and Mechatronics v.14 no.2 Separation of target microbe by laser manipulation and flow control F. Arai;A. Ichikawa;T. Fukuda;K. Horio;K. Itoigawa;K. Morishima https://doi.org/10.20965/jrm.2002.p0133
  14. Proc. of the Micro Total Analysis Systems 2001 (μ-TAS2001) Flow pattern control by flow balancing in microchannel for high speed & high purity separation of microbe in microchip F. Arai;A. Ichikawa;T. Fukuda;K. Horio;K. Itoigawa
  15. IEEE/ASME Trans. Mechatronics v.8 no.1 Pinpoint injection of microtools for minimally invasive micromanipulation of microbe by laser trap F. Arai;H. Maruyama;T. Sakami;A. Ichikawa;T. Fukuda https://doi.org/10.1109/TMECH.2003.809129
  16. Proc. 2003 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems Synchronized laser micromanipulation of microtools for assembly of microbeads and indirect manipulation of microbe F. Arai;T. Sakami;K. Yoshikawa;H. Maruyama;T. Fukuda
  17. Proc. of IEEE Micro Electro Mechanical Systems High throughput separation of microorganisms by pinpoint gelation controlled by local heating for parallel incubation on a chip F. Arai;A. Ichikawa;H. Maruyama;T. Sakami;T. Fukuda
  18. Proc. of the Micro Total Analysis Systems 2002(μ-TAS2002) Fixation and isolation of microorganisms by local viscosity control of methyl cellulose solution F. Arai;A. Ichikawa;T. Fukuda;T. Katsuragi
  19. Analyst v.128 no.4 Isolation and extraction of target microbes using thermal sol-gel transformation F. Arai;A. Ichikawa;T. Fukuda;T. Katsuragi https://doi.org/10.1039/b212919a
  20. Proc. of the Micro Tatal Analysis Systems 2003 (μ-TAS2003) Continuous Culture and Monitoring of Selected and Isolated Microorganisms on a Chip by Thermal Gelation F. Arai;A. Ichikawa;T. Fukuda;T. Katsuragi
  21. Robotica Cylindrical micro touch sensor with piezoelectric thin film for microbial separation F. Arai;K. Motoo;P. G. R. Kwon;T. Fukuda;A. Ichikawa;T. Katsuragi
  22. Opt. Lett. v.11 Observation of a single -beam gradient force optical trap for dielectric particles A. Ashkin;J. M. Dziedzic;J. E. Bjorkholm;S. Chu https://doi.org/10.1364/OL.11.000288
  23. Science v.235 Optical trapping and manipulation of viruses and bacteria A. Ashkin;J. M. Dziedzic https://doi.org/10.1126/science.3547653
  24. Biophysical Journal v.61 Forces of a single -beam gradient laser trap on a dielectric sphere in the ray optics regime A. Ashkin https://doi.org/10.1016/S0006-3495(92)81860-X
  25. Optics Letters v.19 no.13 Optical trapping of metallic Rayleigh particles K. Svoboda;S. Block https://doi.org/10.1364/OL.19.000930
  26. Biophysical Journal v.70 Wavelength dependence of cell cloning efficiency after optical trapping H. Liang(et al.) https://doi.org/10.1016/S0006-3495(96)79716-3
  27. Optics Letters v.16 no.19 Pattern formation and flow control of fine particles by laser scanning micromanipulation K. Sasaki;M. Koshioka;H. Misawa;N. Kitamura;H. Masuhara https://doi.org/10.1364/OL.16.001463
  28. Appl. Phys. Lett. v.60 no.3 Multibeam laser manipulation and fixation of microparticles H. Misawa;K. Sasaki;M. Koshioka;N. Kitamura;H. Masuhara https://doi.org/10.1063/1.106695
  29. IEEE Journal of Selected Topics in Quantum Electronics v.2 no.4 Construction of multiple-beam optical traps with nanometer-resolution position sensing K. Visscher;S. P. Gross;S. Block https://doi.org/10.1109/2944.577338
  30. Adv. Mater. v.12 no.12 Optical trapping for the manipulatin of colloidal particles C. Mio;D.W.M. Marr https://doi.org/10.1002/1521-4095(200006)12:12<917::AID-ADMA917>3.0.CO;2-K
  31. Science v.296 Microfluidic control using colloidal devices A. Terray;J. Okakey;D.W.M. Marr https://doi.org/10.1126/science.1072133
  32. Video Proceedings of Int. Conf. Robotics and Automation Synchronized laser micromanipulation by high-speed laser scanning, -dancing yeasts- F. Arai;T. Sakami;T. Fukuda
  33. Review of Scientific Instruments v.72 no.3 Computer-generated holographic optical tweezer arrays E. R. Dufresne;G. C. Spalding;M. T. Dearing;S. A. Sheets;D. G. Grier https://doi.org/10.1063/1.1344176