16S rDNA-PCR and RFLP Analysis for rapid identification of Spoilage Bacteria from low Salt Cucumber Brine

저염 발효오이로부터 16S rDNA-PCR과 RFLP분석을 통한 부패균의 신속한 확인

  • Published : 2004.02.01

Abstract

The aim of this study was to isolate and identify the spoilage bacteria in the low salt cucumber brine. The PCR amplicons comprising a portion of the 16S rRNA gene of the isolated colonies were directly sequenced and the untrimmed whole sequencing results of the unknown strains were aligned with the type strains using BLAST of NCBI. Then Sequence Aligner and Sequence Match of RDP confirmed the outcome. The identified isolates were eight species and belong to three genuses: Clostridium, Lactobacillus, and Bacillus. The RFLP pattern of the 16S rRNA gene of isolates verified the identified species. From now on the complex spoiling process of law salt fermented cucumber could be analyzed using the isolated species individually or with certain combinations.

건강에 대한 관심의 증대로 인한 저염식품의 개발 필요성에 맞추어 오이발효에 염의 농도를 낮추게 되면 정상적 일차발효 후에 이차발효가 진행됨으로써 결국 부패하게 된다. 장기간에 걸쳐 다양한 균의 복합적 작용으로 진행되는 저염 발효오이의 부패 과정을 이해하기 위하여 이에 관련된 균을 분리 동정하였다. 부패발효액을 무기배양하여 균을 분리하고 이들의 16s rRNA 유전자 부분을 universal primer를 이용한 PCR로서 증폭하여 서열분석 하였다. 분석된 800 염기 길이의 서열 전체를 그대로 이용하여 NCBI의 BLAST로서 유사종을 찾고 RDP의 Sequence Aligner와 Sequence Match에서 재확인하여 분리된 균을 3속 8종으로 동정하였다. Database 내의 표준균 서열을 기반으로 한 제한효소 지도와 동정된 균의 PCR 생성묵의 제한효소 처리결과(RFLP)를 비교하여 동정 결과를 실험으로 검정하였다. 동정과정에서 sequencing 결과 전체를 이용하는 점과 RDP를 통한 확인과 RFLP를 이용한 검정은 동정 결과에 대한 신뢰도를 한층 증가시켰다. 또 분리된 8종은 개별적 특징의 조사나 적절한 조합을 이룰 때의 상호 의존도 등을 조사할 수 있게 함으로써 여러 균에 의한 복합적 과정인 부패를 순차적 혹은 요인별로 나누어 살펴보는 연구를 가능하게 한다.

Keywords

References

  1. J. Food Sci. v.61 no.4 Assuring microbial and textural stability of fermented cucumbers by pH adjustment and sodium benzoate addition Fleming,H.P.;R.L.Thompson;R.F.McFeeters https://doi.org/10.1111/j.1365-2621.1996.tb12213.x
  2. Biotechnology Vegetable fermentations Fleming,H.P.;k.H.Kyung;F.Breidt;H.J.Rehm(ed.);G.Reed(ed.)
  3. J. Food Sci. v.60 no.2 fermentation of cucumbers without sodium chloride Fleming,H.P.;L.C.McDonald;R.F.McFeeters;E.G.Humphrie https://doi.org/10.1111/j.1365-2621.1995.tb05662.x
  4. Biotechniques v.17 no.1 A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences Avaniss-Aghajani,E.;K.Jones;D.Chapman;C.Brunk
  5. J. Rapid Methods Automation Microbiol v.4 Identification of lactic acid bacteria by ribotyping Breidt,F.;H.P.Fleming https://doi.org/10.1111/j.1745-4581.1996.tb00125.x
  6. Appl. Environ. Microbiol. v.59 Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphism Jensen,M.A.;J.A.Webster;N.Straus
  7. Anaerobe v.7 Identification of actinomyces, Propionibacteria, Lactobacilli and Bifidobacteria by amplified 16S rDNA restriction analysis Hall,V.;T.Lewis-Evans;B.L.Duerden https://doi.org/10.1006/anae.2001.0375
  8. Mol. Gen. Met. v.66 Bacterial species identification after DNA amplification with a universal primer pair McCabe,K.M.;Y.H.Zhang;B.L.Huang;E.A.Wagar;E.R.B.McCabe https://doi.org/10.1006/mgme.1998.2795
  9. J. Appl. Micro. v.89 Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus complex Kullen,M.J.;R.B.Sanozky-Dawes;D.C.Crowell;T.R.Klaenhammer https://doi.org/10.1046/j.1365-2672.2000.01146.x
  10. Food Microbiol. v.10 no.6 Evaluation of malolactic-deficient strains of lactobacillus plantarum for use in cucumber fermentations McDonald,L.C.;D.H.Shieh;H.P.Fleming;R.F.McFeeters;R.L.Thompson https://doi.org/10.1006/fmic.1993.1054
  11. Handbook of Microbiolgical Media Atlas,R.M.
  12. Appl. Microbiol. v.21 Classification and identification of propionibacteria based on ribosomal RNA genes and PCR System Dasen,G.;J.Smutny;M.Teuber;L.Meile https://doi.org/10.1016/S0723-2020(98)80030-1
  13. MS Thesis, Dept. of Swiss Federal Institute of Technology Detection of bacterial pathogens in clinical specimens by broad-range PCR amplification and direct sequencing of part of the 16S rRNA gene Goldenberger,D.
  14. J. Clin. Microbiol. v.32 PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid Greisen,K.;M.Loeffelholz;A.Purohit;D.Leong
  15. A guide to methods and applications PCR protocols Innis,M.A.;D.H.Gelfand;J.J.Sinisky;T.J.White
  16. Nucleic Acids Res. v.25 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Altschul,S.F.;L.Thomas;A.A.Schfiffer;J.Zhang;Z.Zhang;W.Miller;D.J.Lipman https://doi.org/10.1093/nar/25.17.3389
  17. J. Mol. Biol. v.215 Basic local alignment search tool Altschul,S.F.;W.Gish;W.Miller;E.W.Myers;D.J.Lipman https://doi.org/10.1016/S0022-2836(05)80360-2
  18. Nucleic Acids Res. v.31 no.1 The Ribosomal Database Project (RDP-Ⅱ): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy Cole,J.R.;B.Chai;T.L.Marsh;R.J.Farris;Q.Wang;S.A.Kulam;S.Chandra;D.M.McGarrell;T.M.Schmidt;G.M.Garrity;J.M.Tiedje https://doi.org/10.1093/nar/gkg039
  19. Nucleic Acids Research v.29 The RDP-Ⅱ(Ribosomal Database Project.) Maidak,B.L.;J.R.Cole;T.G.Liburn;C.T.Parker Jr;P.R.Saxman;R.J.Farris;G.M.Garrity;G.J.Olsen;T.M.Schmidt;J.M.Tiedje https://doi.org/10.1093/nar/29.1.173
  20. Nucleic Acids Res. v.22 CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Thompson,J.D.;D.G.Higgins;T.J.Gibson https://doi.org/10.1093/nar/22.22.4673