Production and Process Monitoring of 5-Aminolevulinic Acid (ALA) by Recombinant E. coli I. Characteristics of ALA Production

유전자 재조합 대장균에 의한 5-Aminolevulinic Acid (ALA)의 생산 및 공정 모니터링 I. ALA의 생산 특성

  • 이종일 (전남대학교 응용화학공학부, 생물공정기술연구실) ;
  • 정상윤 (전남대학교 물질·생물화공과, 생물공정기술연구실) ;
  • 서국화 (전남대학교 물질·생물화공과, 생물공정기술연구실) ;
  • 한경아 (전남대학교 물질·생물화공과, 생물공정기술연구실) ;
  • 조성효 (전남대학교 응용화학공학부) ;
  • 백경환 (전남대학교 응용생물공학부)
  • Published : 2004.02.01

Abstract

In this study the extracellular production of 5-aminolevulinic aicd (ALA) by recombinant E. coli BL2l (DE3) pLysS harboring the plasmid pFLS45 are investigated. Optimum concentrations of succinic acid and glycine for cell growth and ALA production were found to be 30 mM and 15 mM, respectively. Levulinic acid (LA) as an inhibitor of ALAD was added to the culture medium in the end of exponential cell growth phase and its optimum concentration was 30 mM. Growth of recombinant E. coli BL2l (DE3) pLysS (pFLS45) was largely dependent upon the pH value of culture medium. When the pH of culture medium was in the range of 6.0 and 6.5, high cell mass and ALA production were obtained. IPTG induction for the expression of the fusion gene did not enhance the production of ALA. Recombinant cell grew at 30't faster than at 37$^{\circ}C$, but ALA productivity was lower than at 37$^{\circ}C$. Repeated addition of glycine, succinic acid, and LA increased the production of ALA and the inhibition of intracellular ALA dehydratase activity, with up to 1.3 g/L ALA having been produced in the cultivation.

본 연구에서는 ALA의 생산 공정을 개발하기 위해 재조합 플라스미드, pFLS45를 도입한 재조합 대장균의 성장과 ALA 생산 특성을 조사하였다 30 mM 숙신산과 15 mM 글리신이 첨가된 배양액에서 균체 성장이 원활하고 높은 ALA 생산성을 보였다. 그리고 LA는 균체성장이 거의 다 이루어진 정지기에 첨가될 때 균체 성장에 저해를 일으키지 않으면서 ALA 생산성을 높일 수 있었다. 또한 세포내 효소 ALAD의 활성은 30 mM LA가 첨가되었을 때 가장 효과적으로 저해되었다. 본 연구에서 사용한 재조합 대장균은 pH 조절을 위한 산이나 알칼리 첨가에 민감하여 pH를 조절하지 않은 경우에 균체의 성장이 가장 원활하였고 ALA 생산성도 높았다. 3$0^{\circ}C$에서 배양한 경우 균체의 성장은 원활하였지만 ALA의 생산성이 매우 낮았다. 그리고 일반적인 pET 계열의 재조합 대장균의 발현 양상과 달리 유도 발현하지 않고 LA만을 첨가했을 때 ALA 생산 농도는 800 mg/L 이상으로 매우 높았다. 7L급 생물반응기를 이용하여 MS8 배지에 기질 (포도당, 숙신산, 글리신) 및 LA를 간헐적으로 첨가하여 균체 성장 및 ALA 생산 특성을 살펴보았다. 균체량은 높지 않았지만 기질첨가 이후 ALA 생산량은 꾸준히 증가하여 기존의 ALA 생산량보다 두 배 이상 증가한 1300mg/L 정도 생산되었으며 ALAD의 활성은 다른 실험결과와 비교할 때 30% 정도 낮았다. 한편, LA 및 숙신산의 첨가 이후 낮아진 배양액의 pH는 균체 성장을 저해하였는데 발효 중 기질을 첨가한 후 pH를 잘 제어하면서 유가식 또는 연속식 발효를 수행하면 ALA 생산성을 증대시킬 수 있을 것으로 생각된다. 그러나 고농도의 ALA 생산은 균체 생존에 영향을 주므로(37) 생산된 ALA를 적절히 분리하는 방법이 필요할 것으로 사료된다.

Keywords

References

  1. Appl. microbiol. Biotechnol. v.58 Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid Sasaki,K.;M.Watanabe;T.Tanaka;T.Tanaka https://doi.org/10.1007/s00253-001-0858-7
  2. Biotechnol. Genet. Eng. Rev. v.18 5-Aminolevulinic acid : Production by fermentation, and agricultural and biomedical applications Nishikawa,S.;Y.Murooka https://doi.org/10.1080/02648725.2001.10648012
  3. Biotechnol. Prog. v.10 5-Aminolevulinic acid: A potential herbicide/insecticide from microorganism Sasikala,Ch;Ch.V.Ramana;P.R.Rao https://doi.org/10.1021/bp00029a001
  4. J. Photochem. Photobiol. A : Chemistry v.94 A new synthesis of 5-aminolevulinic acid via dyesensitized oxygenation of N-furfurylphthalimide Takeya,H.;H.Ueki;S.Miyanari;T.Shimizu;M.Kojima https://doi.org/10.1016/1010-6030(95)04209-1
  5. J. Ferment. Bioeng. v.68 Production of 5-aminolevulinic acid by methanogens Lin,D.;N.Nishio;S.Nagai https://doi.org/10.1016/0922-338X(89)90053-6
  6. J. Biosci. Bioeng. v.88 Effect of levulinic acid on 5-aminolevulinic acid biosynthesis in heterotrophic culture on Chlorella regularis YA-603 Ano,A.;H.Funahashi;K.Nakano;Y.Nishizawa https://doi.org/10.1016/S1389-1723(99)80176-5
  7. World. J. Microbiol. Biotechnol. v.11 5-Aminoleulinic acid production by Chlorella sp. during heterotrophic cultivation in the dark Sasaki,K.;K.Watanabe;T.Tanaka;Y.Hotta https://doi.org/10.1007/BF00367123
  8. Appl. Microbiol. Biotechnol. v.32 Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using effluent waste from an anaerobic digestor Sasaki,K.;T.Tanaka;Y.Nishizawa;M.Hayashi https://doi.org/10.1007/BF00164749
  9. J. Ferment. Bioeng. v.71 Enghanced production of 5-aminolevulinic acid by repeated addition of levulinic acid and supplement of precursors in Rhodobacter sphaeroides Sasaki,K.;T.Tanaka;Y.Nishizawa;M.Hayashi https://doi.org/10.1016/0922-338X(91)90251-B
  10. Seibutu-Kougaku v.78 Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacteria Kamiyama,H.;Y.Hotta;T.Tanaka;S.Nishikawa;K.Sasaki
  11. Appl. Microbiol. Biotechnol. v.56 Construction of an expression vector for propionibacteria and its use in production of 5-amimolevulinic acid by Propionibacterium freudenreichii Kiatpapan,P.;Y.Murooka https://doi.org/10.1007/s002530100603
  12. Appl. Environ. Microbiol. v.56 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hem A gene VAN DER Mariet, J.W.;J.G.Zeikus
  13. Phytochemistry v.36 Inhibition of 5-aminolevulinic acid dehydratase activity by gabaculine Kedy,P.;P.Bruyant;A.P.Balange https://doi.org/10.1016/S0031-9422(00)89632-6
  14. Enzyme Microb. Technol. v.32 Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli Using b-glucose Lee,D.H.;W.J.Jun;K.M.Kim;D.H.Shin;H.Y.Cho;B.S.Hong https://doi.org/10.1016/S0141-0229(02)00241-7
  15. Porphyrins v.6 Production methods and applications of 5-aminolevulinic acid Takeya,H.;T.Tanaka;T.Hotta;K.Sasaki
  16. Biotech. Lett. v.21 Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum Choi,C.;B.S.Hong;H.C.Sung;H.S.Lee;J.H.Kim https://doi.org/10.1023/A:1005520007230
  17. Gene v.121 Cloning and characterization of genes involved in the biosynthesis of δ-aminolevulinic acid in Escherichia coli Ikemi,M.;K.Murakami;M.Hashimoto;Y.Murooka https://doi.org/10.1016/0378-1119(92)90170-T
  18. Enzyme Microb. Technol. v.6 Photodynamic berbicides. I. Concepts and phenomenology Rebeiz,C.A.;A.Montazer-Zouhool;H.Hopen;S.M.Wu https://doi.org/10.1016/0141-0229(84)90012-7
  19. pestic Biochem Physiol. v.30 porphyric insecticides. I. Concept and phenomenology Rebeiz,C.A.;J.A.Juvik;C.C.Rebeiz https://doi.org/10.1016/0048-3575(88)90055-7
  20. J. Photochem. Photobiol. v.6 Photodynamic therapy with endogenous protoporphyrin Ⅸ: basic principals and present clinical experience Kennedy,J.C.;R.H.Pottier;D.C.Pross https://doi.org/10.1016/1011-1344(90)85083-9
  21. J. Photochem. Photobiol. v.34 Photodynamic therapy: a promising new modality for the treatment of cancer Schuitmaker,J.J.;P.Bass;H.L.L.M. van Leengoed;F.W. van der Meulen;W.M.Star;N. van Zandwijk https://doi.org/10.1016/1011-1344(96)07342-3
  22. Chemical Regulation of Plants v.34 Plant growth-regulating activites of 5-aminolevulinic acid Hotta,Y.;K.Watanabe
  23. J. Pesic. Sci. v.23 Improvement of cold resistance in rice seeding by 5-aminolevulinic acid Hotta,Y.;T.Tanaka;L.Bingshan;Y.Tachechi;M.Konnai https://doi.org/10.1584/jpestics.23.29
  24. Plant Growth Regulation v.32 Improving salt tolerance of cotton seeding with 5-aminolevulinic acid Watanabe,K.;T.Tanaka;Y.Hotta;H.Kuramochi;Y.Takeuchi https://doi.org/10.1023/A:1006369404273
  25. J. Photochem. Photobiol. v.60 Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: fluorescence microscopic studies Leunig,A.;M.Mehlmann;C.Betz;H.Stepp;S.Arbogast;G.Grevers;R.Baumgartner https://doi.org/10.1016/S1011-1344(01)00117-8
  26. Ms Thesis, Yosu National University Antibacterial Effects of ALA against Fish Pathogenic Bacteria Park,K.H.
  27. Environ. Ecol. v.7 Inhibitory effects of lead on delta-aminolevulinic acid dehydratase enzyme in the fish Tilapia mossambica Subramanyam,V.;D.M.Backyavathy;R.Ramamurthi
  28. Bs Thesis, Chonnam National university Production of 5-Aminolevulinic Acid by Recombinant E. coli Seo,K.H.
  29. Biotechnol. Bioeng. v.73 no.3 Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding Akesson,M.;P.Hagander;J.P.Axelsson https://doi.org/10.1002/bit.1054
  30. J. Biol. Chem. v.219 The Occurence and Determination of δ-Aminolevulinic acid and Porphobilinogen in Urine Mauzerall,D.;S.Granick
  31. Protaminbacter ruber, J. Nutr. Sci. Vitaminol. v.27 Regulation of Vitamin B12 and Bacteriochlorophyll Biosynthesis in a Facultative Methylotroph Sato,K.;K.Ishida;T.Kuno;A.Mizuno;S.Shimizu https://doi.org/10.3177/jnsv.27.439
  32. Anal. Biochem. v.72 A rapid and sensitive mehod for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding Bradford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  33. J. Biotechnol. v.92 Effect of glycine on the cell yield and growh rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by 13c NMR spectroscopy Han,L.;M.Doverskog;S.O.Enfors;L.Haggstrom https://doi.org/10.1016/S0168-1656(01)00373-X
  34. Biotechnol. Bioeng. v.68 no.3 Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using 13C-NMR/MS Noronha,S.B.;H.J.C.Yeh;T.F.Spande;J.Shiloach https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<316::AID-BIT10>3.0.CO;2-2
  35. Biotechnol. Bioeng. v.65 no.1 Minitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor DeLisa,M.P.;J.Li;G.Rao;W.A.Weigand;W.E.Bentley https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<54::AID-BIT7>3.0.CO;2-R
  36. Lasers Med. Sci. v.14 Endogenous porphyrin production in bacteria by δ-aminolevulinic acid and subsequent bacterial photoeradication Nitzan,Y.;M.Kauffman https://doi.org/10.1007/s101030050094
  37. Ms thesis, Chonnam National University Production of 5-Aminolevulinic Acid by Recombinant E. coli and Process Monitoing Chung,S.Y.