References
- Appl. microbiol. Biotechnol. v.58 Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid Sasaki,K.;M.Watanabe;T.Tanaka;T.Tanaka https://doi.org/10.1007/s00253-001-0858-7
- Biotechnol. Genet. Eng. Rev. v.18 5-Aminolevulinic acid : Production by fermentation, and agricultural and biomedical applications Nishikawa,S.;Y.Murooka https://doi.org/10.1080/02648725.2001.10648012
- Biotechnol. Prog. v.10 5-Aminolevulinic acid: A potential herbicide/insecticide from microorganism Sasikala,Ch;Ch.V.Ramana;P.R.Rao https://doi.org/10.1021/bp00029a001
- J. Photochem. Photobiol. A : Chemistry v.94 A new synthesis of 5-aminolevulinic acid via dyesensitized oxygenation of N-furfurylphthalimide Takeya,H.;H.Ueki;S.Miyanari;T.Shimizu;M.Kojima https://doi.org/10.1016/1010-6030(95)04209-1
- J. Ferment. Bioeng. v.68 Production of 5-aminolevulinic acid by methanogens Lin,D.;N.Nishio;S.Nagai https://doi.org/10.1016/0922-338X(89)90053-6
- J. Biosci. Bioeng. v.88 Effect of levulinic acid on 5-aminolevulinic acid biosynthesis in heterotrophic culture on Chlorella regularis YA-603 Ano,A.;H.Funahashi;K.Nakano;Y.Nishizawa https://doi.org/10.1016/S1389-1723(99)80176-5
- World. J. Microbiol. Biotechnol. v.11 5-Aminoleulinic acid production by Chlorella sp. during heterotrophic cultivation in the dark Sasaki,K.;K.Watanabe;T.Tanaka;Y.Hotta https://doi.org/10.1007/BF00367123
- Appl. Microbiol. Biotechnol. v.32 Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using effluent waste from an anaerobic digestor Sasaki,K.;T.Tanaka;Y.Nishizawa;M.Hayashi https://doi.org/10.1007/BF00164749
- J. Ferment. Bioeng. v.71 Enghanced production of 5-aminolevulinic acid by repeated addition of levulinic acid and supplement of precursors in Rhodobacter sphaeroides Sasaki,K.;T.Tanaka;Y.Nishizawa;M.Hayashi https://doi.org/10.1016/0922-338X(91)90251-B
- Seibutu-Kougaku v.78 Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacteria Kamiyama,H.;Y.Hotta;T.Tanaka;S.Nishikawa;K.Sasaki
- Appl. Microbiol. Biotechnol. v.56 Construction of an expression vector for propionibacteria and its use in production of 5-amimolevulinic acid by Propionibacterium freudenreichii Kiatpapan,P.;Y.Murooka https://doi.org/10.1007/s002530100603
- Appl. Environ. Microbiol. v.56 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hem A gene VAN DER Mariet, J.W.;J.G.Zeikus
- Phytochemistry v.36 Inhibition of 5-aminolevulinic acid dehydratase activity by gabaculine Kedy,P.;P.Bruyant;A.P.Balange https://doi.org/10.1016/S0031-9422(00)89632-6
- Enzyme Microb. Technol. v.32 Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli Using b-glucose Lee,D.H.;W.J.Jun;K.M.Kim;D.H.Shin;H.Y.Cho;B.S.Hong https://doi.org/10.1016/S0141-0229(02)00241-7
- Porphyrins v.6 Production methods and applications of 5-aminolevulinic acid Takeya,H.;T.Tanaka;T.Hotta;K.Sasaki
- Biotech. Lett. v.21 Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum Choi,C.;B.S.Hong;H.C.Sung;H.S.Lee;J.H.Kim https://doi.org/10.1023/A:1005520007230
- Gene v.121 Cloning and characterization of genes involved in the biosynthesis of δ-aminolevulinic acid in Escherichia coli Ikemi,M.;K.Murakami;M.Hashimoto;Y.Murooka https://doi.org/10.1016/0378-1119(92)90170-T
- Enzyme Microb. Technol. v.6 Photodynamic berbicides. I. Concepts and phenomenology Rebeiz,C.A.;A.Montazer-Zouhool;H.Hopen;S.M.Wu https://doi.org/10.1016/0141-0229(84)90012-7
- pestic Biochem Physiol. v.30 porphyric insecticides. I. Concept and phenomenology Rebeiz,C.A.;J.A.Juvik;C.C.Rebeiz https://doi.org/10.1016/0048-3575(88)90055-7
- J. Photochem. Photobiol. v.6 Photodynamic therapy with endogenous protoporphyrin Ⅸ: basic principals and present clinical experience Kennedy,J.C.;R.H.Pottier;D.C.Pross https://doi.org/10.1016/1011-1344(90)85083-9
- J. Photochem. Photobiol. v.34 Photodynamic therapy: a promising new modality for the treatment of cancer Schuitmaker,J.J.;P.Bass;H.L.L.M. van Leengoed;F.W. van der Meulen;W.M.Star;N. van Zandwijk https://doi.org/10.1016/1011-1344(96)07342-3
- Chemical Regulation of Plants v.34 Plant growth-regulating activites of 5-aminolevulinic acid Hotta,Y.;K.Watanabe
- J. Pesic. Sci. v.23 Improvement of cold resistance in rice seeding by 5-aminolevulinic acid Hotta,Y.;T.Tanaka;L.Bingshan;Y.Tachechi;M.Konnai https://doi.org/10.1584/jpestics.23.29
- Plant Growth Regulation v.32 Improving salt tolerance of cotton seeding with 5-aminolevulinic acid Watanabe,K.;T.Tanaka;Y.Hotta;H.Kuramochi;Y.Takeuchi https://doi.org/10.1023/A:1006369404273
- J. Photochem. Photobiol. v.60 Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: fluorescence microscopic studies Leunig,A.;M.Mehlmann;C.Betz;H.Stepp;S.Arbogast;G.Grevers;R.Baumgartner https://doi.org/10.1016/S1011-1344(01)00117-8
- Ms Thesis, Yosu National University Antibacterial Effects of ALA against Fish Pathogenic Bacteria Park,K.H.
- Environ. Ecol. v.7 Inhibitory effects of lead on delta-aminolevulinic acid dehydratase enzyme in the fish Tilapia mossambica Subramanyam,V.;D.M.Backyavathy;R.Ramamurthi
- Bs Thesis, Chonnam National university Production of 5-Aminolevulinic Acid by Recombinant E. coli Seo,K.H.
- Biotechnol. Bioeng. v.73 no.3 Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding Akesson,M.;P.Hagander;J.P.Axelsson https://doi.org/10.1002/bit.1054
- J. Biol. Chem. v.219 The Occurence and Determination of δ-Aminolevulinic acid and Porphobilinogen in Urine Mauzerall,D.;S.Granick
- Protaminbacter ruber, J. Nutr. Sci. Vitaminol. v.27 Regulation of Vitamin B12 and Bacteriochlorophyll Biosynthesis in a Facultative Methylotroph Sato,K.;K.Ishida;T.Kuno;A.Mizuno;S.Shimizu https://doi.org/10.3177/jnsv.27.439
- Anal. Biochem. v.72 A rapid and sensitive mehod for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding Bradford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
- J. Biotechnol. v.92 Effect of glycine on the cell yield and growh rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by 13c NMR spectroscopy Han,L.;M.Doverskog;S.O.Enfors;L.Haggstrom https://doi.org/10.1016/S0168-1656(01)00373-X
- Biotechnol. Bioeng. v.68 no.3 Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using 13C-NMR/MS Noronha,S.B.;H.J.C.Yeh;T.F.Spande;J.Shiloach https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<316::AID-BIT10>3.0.CO;2-2
- Biotechnol. Bioeng. v.65 no.1 Minitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor DeLisa,M.P.;J.Li;G.Rao;W.A.Weigand;W.E.Bentley https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<54::AID-BIT7>3.0.CO;2-R
- Lasers Med. Sci. v.14 Endogenous porphyrin production in bacteria by δ-aminolevulinic acid and subsequent bacterial photoeradication Nitzan,Y.;M.Kauffman https://doi.org/10.1007/s101030050094
- Ms thesis, Chonnam National University Production of 5-Aminolevulinic Acid by Recombinant E. coli and Process Monitoing Chung,S.Y.