Effect of Fibroblast Growth Factor-2 on Migration and Proteinases Secretion of Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk (Division of Biological Science, Institute for Molecular Biology & Genetics, Chonbuk National University) ;
  • Kim, Hwan-Gyu (Division of Biological Science, Institute for Molecular Biology & Genetics, Chonbuk National University)
  • Published : 2004.04.01

Abstract

Fibroblast growth factor-2 (FGF-2) is known to modulate numerous cellular functions in various cell types, including cell proliferation, differentiation, survival, adhesion, migration, and motility, and also in processes such as wound healing, angiogenesis, and vasculogenesis. FGF-2 regulates the expression of several molecules thought to mediate critical steps during angiogenesis. This study examines the mechanisms underlying FGF-2-induced cell migration, using human umbilical vein endothelial cells (HUVECs). FGF-2 induced the nondirectional and directional migration of endothelial cells, which are inhibited by MMPs and plasmin inhibitors, and induced the secretion of matrix metalloproteinase-3 (MMP3) and MMP-9, but not MMP-l and MMP-2. FGF-2 also induced the secretion of the tissue inhibitor of metalloproteinase-l (TIMP-I), but not of TIMP- 2. Also, the pan-PKC inhibitor inhibited FGF-2-induced MMP-9 secretion. It is, therefore, suggested that FGF-2 induces the migration of cultured endothelial cells by means of increased MMPs and plasmin secretion. Furthermore, FGF-2 may increase MMP-9 secretion by activating the PKC pathway.

Keywords

References

  1. FEBS Lett. v.405 Involvement of PA/plasmin system in the processing of pro-MMP-9 and in second step of pro-MMP-2 activation Baramova,E.N.;K.Bajou;A.Remacle;C.L'Hoir;H.W.Krell;U.H.Weidle;A.Noel;J.M.Foidart https://doi.org/10.1016/S0014-5793(97)00175-0
  2. Adv. Cancer Res. v.59 The FGF family of growth factors and oncogenes Basilico,C.;D.Moscatelli https://doi.org/10.1016/S0065-230X(08)60305-X
  3. J. Biol. Chem. v.271 Characterization of the 46-kDa intermediates of matrix metalloproteinase 3 (stromelysin 1) obtained by site-directed mutation of phenylalanine 83 Benbow,U.;G.Buttice;H.Nagase;M.Kurkinen https://doi.org/10.1074/jbc.271.18.10715
  4. Endocr. Rev. v.18 Biological roles of fibroblast growth factor-2 Bikfalvi,A.;S.Klein;G.Pintucci;D.B.Rifkin https://doi.org/10.1210/er.18.1.26
  5. Science v.264 Requirement of vascular integrin alpha v beta 3 for angiogenesis Brooks,P.C.;R.A.Clark;D.A.Cheresh https://doi.org/10.1126/science.7512751
  6. Exp. Eye Res. v.74 Effects of angiogenic growth factor combinations on retinal endothelial cells Castellon,R.;H.K.Hamdi;I.Sacerio;A.M.Aoki;M.C.Keney;A.V.Ljubimov https://doi.org/10.1006/exer.2001.1161
  7. J. Biol. Chem. v.275 Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and p42/p44 MAP kinase Chikazu,D.;Y.Hakeda;N.Ogata;K.Nemoto;A.Itabashi;T.Takato;M.Kumegawa;K.Akamura;H.Kawaguchi https://doi.org/10.1074/jbc.M910132199
  8. J. Biol. Chem. v.266 Inhibition of autoproteolytic activation of interstitial procollagenase by recombinant metalloproteinase inhibitor MI/TIMP-2 DeClerck,Y.A.;T.D.Yean;H.S.Lu;J.Ting;K.E.Langley
  9. Arterioscler. Thromb. Vasc. Biol. v.23 TWEAK is an endothelial cell growth and chemotactic factor that also potentiates FGF-2 and VEGF-A mitogenic activity Donohue,P.J.;C.M.Richards;S.A.Brown;H.N.Hanscom;J.Buschman;S.Thangada;T.Hla;M.S.Williams;J.A.Winkles https://doi.org/10.1161/01.ATV.0000062883.93715.37
  10. Matrix Metalloproteinase Regulation of matrix metalloproteinase gene expression Fini,E.M.;J.R.Cook;R.Mohan;C.E.Brinckerhoff;Parks,W.C.(ed.);R.P.Mecham(ed.)
  11. Cell v.87 Blood vessel formation: What is its molecular basis? Folkman,J.;P.A.DAmore https://doi.org/10.1016/S0092-8674(00)81810-3
  12. EXS v.79 Regulation of capillary formation by laminin and other components of the extracellular matrix Grant,D.S.;H.K.Kleinman
  13. Curr. Opin. Hematol. v.2 Changing concepts concepts in fibrinolysis Hajjar,K.A. https://doi.org/10.1097/00062752-199502050-00004
  14. Proc. Natl. Acad. Sci. v.86 Tissue cooperation in a proteolytic cascade activating human interstitial collagenase He,C.S.;S.M.Wilhelm;A.P.Pentland;B.L.Marmer;G.A.Grant;A.Z.Eisen;G.I.Goldberg https://doi.org/10.1073/pnas.86.8.2632
  15. Biochem. J. v.308 Steps involved in activation of the complex of pro-matrix metalloproteinase 2 (progelatinase A) and tissue inhibitor of metalloproteinases (TIMP)-2 by 4-aminophenylmercuric acetate Itoh,Y.;S.Binner;H.Nagase https://doi.org/10.1042/bj3080645
  16. Mol. Biol. Cell v.4 Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells Klein,S.;F.G.Giancotti;M.Presta;S.M.Albelda;C.A.Buck;D.B.Rifkin https://doi.org/10.1091/mbc.4.10.973
  17. Cell and Tissue Culture Laboratory procedures Kleiner,D.E.;I.M.K.Margulis;W.G.Stetler-Stevenson;Doyle,A.(ed.);J.B.Griffiths(ed.);D.G.Newell(ed.)
  18. Circ. Res. v.86 Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion Kim,I.;H.G.Kim;S.O.Moon;S.W.Chae;J.N.So;K.N.Koh;B.C.Ahn;G.Y.Koh https://doi.org/10.1161/01.RES.86.9.952
  19. J. Biol. Chem. v.27 Molecular cloning, expression, and characterization of angiopoietin-related protein Kim,I.;S.O.Moon;K.N.Koh;H.Kim;C.S.Uhm;H.J.Kwak;H.G.Kim;G.Y.Koh
  20. J. Microbiol. Biotechnol. v.12 Enhancement of tissue type plasminogen activator (tPA) production from recombinant CHO cells by low electromagnetic fields Lee,S.H.;H.S.lee;M.K.Lee;J.H.Lee;J.D.Kim;Y.S.Park;S.Y.Lee;H.Y.Lee
  21. Thromb. Haemost. v.86 Plasmin and matrix metalloproteinases in vascular remodeling Lijnen,H.R. https://doi.org/10.1055/s-0037-1616230
  22. Biochem. Biophys. Res. Commun. v.293 FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway Liu,J.F.;M.Crepin;J.M.Liu;D.Barritault;D.Ledoux https://doi.org/10.1016/S0006-291X(02)00350-9
  23. Physiol. Rev. v.73 Biology and biochemistry of proteinases in tumor invasion Mignatti,P.;D.B.Rifkin https://doi.org/10.1152/physrev.1993.73.1.161
  24. J. Urol. v.157 Basic fibroblast growth factor regulates matrix metalloproteinases production and in vitro invasiveness in human bladder cancer cell lines Miyake,H.;K.Yoshimura;I.Hara;H.Eto;S.Arakawa;S.Kamidono https://doi.org/10.1016/S0022-5347(01)64779-7
  25. J. Biol. Chem. v.275 Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B Mohan,R.;J.Sivak;P.Ashton;L.A.Russo;B.Q.Pham;N.Kasahara;M.B.Raizman;M.E.Fini https://doi.org/10.1074/jbc.275.14.10405
  26. Biol. Chem. v.378 Activation mechanisms of matrix metalloproteinases Nagase,H.
  27. J. Biol. Chem. v.274 Matrix metalloproteinases Nagase,H.;J.F.Woessner,Jr. https://doi.org/10.1074/jbc.274.31.21491
  28. Biochemistry v.33 Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A Nguyen,Q.;F.Willenbrock;M.I.Cockett;M.O'Shea;A.J.Docherty;G.Murphy https://doi.org/10.1021/bi00174a015
  29. Endocrinology v.141 Epidermal growth factor and basic fibroblast growth factor increase the production o matrix metalloparoteinases during in vitro decidualization of rat endometrial stromal cells Nuttall,R.K.;T.G.Kennedy https://doi.org/10.1210/en.141.2.629
  30. J. Biol. Chem. v.267 Matrix metalloproteinase 9 (92-kDa gelatinase/type Ⅳ collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties Okada,Y.;Y.Gonoji;K.Naka;K.Tomita;I.Nakanishi;K.Iwata;K.Yamashita;T.Hayakawa
  31. Nat. Rev. Cancer v.2 Strategies for MMP inhibition in cancer: Innovations for the post-trial era Overall,C.M.;C.Lopez-Otin https://doi.org/10.1038/nrc884
  32. Enzyme Protein v.49 Angiogenesis: A paradigm for balanced extracellular proteolysis during cell migration and morphogenesis Pepper,M.S.;R.Montesano;S.J.Mandriota;L.Orci;J.D.Vassalli https://doi.org/10.1159/000468622
  33. Nature v.386 Mechanism of angiogenesis Risau,W. https://doi.org/10.1038/386671a0
  34. J. Microbiol. Biotechnol. v.13 Proliferation, apoptosis, and telomerase activity in human cord blood CD34+ cells cultured with combinations of various cytokines Lee,H.S.;M.Y.Jang;J.H.Choi;Y.Y.Lee;H.B.Park;Y.S.Lee;S.W.Kim;M.J.Ahn
  35. Exp. Cell Res. v.186 Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads Rosen,E.M.;L.Meromsky;E.Setter;D.W.Vinter;I.D.Goldberg https://doi.org/10.1016/0014-4827(90)90205-O
  36. J. Clin. Invest. v.103 Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention Stetler-Stevenson,W.G. https://doi.org/10.1172/JCI6870
  37. Biochemistry v.29 Mechanisms of activation of tissue procollagenase by matrix matalloproteinase 3 (stromelysin) Suzuki,K.;J.J.Enghild;T.Morodomi;G.Salvesen;H.Nagase https://doi.org/10.1021/bi00496a016
  38. Int. Rev. Cytol. v.185 Fibroblast growth factors as multifunctional signaling factors Szebenyi,G.;J.F.Fallon
  39. Biochem. J. v.278 The purification of tissue inhibitor of metalloproteinases-2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1 Ward,R.V.;R.M.Hembry;J.J.Reynolds;G.Murphy https://doi.org/10.1042/bj2780179
  40. J. Biol. Chem. v.264 SV40-transformed human lung fibroblasts secrete a 92-kDa type Ⅳ collagenase which is identical to that secreted by normal human macrophages Wilhelm,S.M.;I.E.Collier;B.L.Marmer;A.Z.Eisen;G.A.Grant;G.I.Goldberg