Detection of DNA Damage in Carp Using Single-Cell Gel Electrophoresis Assay for Genotoxicity Monitoring

  • Jin, Hai-Hong (Graduate School of Biotechnology, Handong University) ;
  • Lee, Jae-Hyung (Graduate School of Biotechnology, Handong University) ;
  • Hyun, Chang-Kee (Graduate School of Biotechnology, Handong University,School of Biotechnology, School of Life and Food Sciences, Handong University)
  • 발행 : 2004.04.01

초록

To investigate the potential application of the single-cell gel electrophoresis (SCGE) assay to carp as an aquatic pollution monitoring technique, gill, liver, and blood cells were isolated from carp exposed to a direct-acting mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or indirect mutagen, $benzo[\alpha]pyrene$ $(B[\alpha]P)$, then the DNA strand breakage was analyzed using the assay. Based on testing 5 different cell isolation methods and 6 electrophoretic conditions, the optimized assay conditions were found to be cell isolation by filter pressing and electrophoresis at a lower voltage and longer running time (at 0.4 V/cm for 40 min). In preliminary experiments, gill and liver cells isolated from carp exposed to MNNG in vitro exhibited DNA damage signals even with 0.5 ppb exposure, which is a much higher dose than previously reported. In the gill cells isolated from carp exposed to 0.01-0.5 ppm MNNG in vivo, significant dose-and time-dependent increases were observed in the tail for 4 days. As such, the linear correlation between the relative damage index (RDI) values and time for each dose based on the initial 48-h exposure appeared to provide effective criteria for the genotoxicity monitoring of direct-acting mutagenic pollution. In contrast, the in vivo exposure of carp to 0.25-1.0 ppm of $B[\alpha]P$ for 7 days resulted in dose-and time-dependent responses in the liver cells, in which 24-h delayed responses for metabolizing activation and gradual repair after 48 h were also observed. Thus, the negative-sloped linear correlation between the RDI and time at each dose based on the initial 48 h appeared to provide more effective criteria for the genotoxicity monitoring of indirect mutagenic pollution.

키워드

참고문헌

  1. Mutat. Res. v.415 Development and validation of the in vivo alkaline comet assay for detecting genomic damage in marine fish Belpaeme,K.;K.Cooreman;M.Kirsch-Volders https://doi.org/10.1016/S1383-5718(98)00062-X
  2. Mutat. Res. v.483 Genotoxic evaluation of the pyrethroid lambda-cyhalothrin using the micronucleus test in erythrocytes of the fish Cheirodon interruptus interruptus Campana,M.A.;A.M.Panzeri;V.J.Moreno;F.N.Dulout
  3. Mutat. Res. v.399 Tissue dose, DNA adducts, oxidative DNA damage and CYPIA-immunopositive proteins in mussels exposed to waterborne benzo[α]pyrene Canova,S.;P.Degan;L.D.Peters;D.R.Livingstone;R.Voltan;P.Venier https://doi.org/10.1016/S0027-5107(97)00263-7
  4. Mutat. Res. v.319 Multiple genotoxicity biomarkers in fish exposed in situ to polluted river water De Flora, S.;L.Vigano;F.DAgostini;A.Camoirano;M.Bagnasco;C.Bennicelli;F.Melodia;A.Arillo https://doi.org/10.1016/0165-1218(93)90076-P
  5. Mutat. Res. v.339 The comet assay: A comprehensive review Fairbairn,D.W.;P.L.Olive;K.L.ONeill https://doi.org/10.1016/0165-1110(94)00013-3
  6. Mutat. Res. v.534 Assessment of genotoxic effect of benzo[α]pyrene in endotracheally treated rat using the comet assay Garry,S.;F.Nesslany;E.Aliouat;J.M.Haguenoer;D.Marzin https://doi.org/10.1016/S1383-5718(02)00252-8
  7. Fish Physiol. Chem. v.9 Immunochemical cross-reactivity of beta-naphthoflavone-inducible cytochrome P450 (P450 IA1) in liver microsomes from different fish species and rat Goksoyr,A.;T.Andersson;D.R.Buhler;J.J.Stegeman;D.E.Williams;L.Forlin
  8. Arch. Toxicol. v.17(suppl.) no.17 Use of cytochrome P450 1A (CYP1A) in fish as a biomarker of aquatic pollution Gokoyr,A.
  9. Mar. Environ. Res. v.39 Time-course studies of the biotransformation enzymes in control rainbow trout when adjusting to new habitats Huuskonen,S.;T.Rasanen;K.Koponen;P.Lindstrom-Seppa https://doi.org/10.1016/0141-1136(94)00043-O
  10. Mutat. Res. v.467 Genotoxic potenital of marine sediments from the North Sea Kammann,U.;J.C.Riggers;N.Theobald;H.Steinhart https://doi.org/10.1016/S1383-5718(00)00030-9
  11. Aquat. Toxicol. v.46 CYP1A expression in liver and gill of rainbow trout following waterborne exposure: Implications for biomarker determination Levine,S.L.;J.T.Oris https://doi.org/10.1016/S0166-445X(98)00124-6
  12. J. Chem. Technol. Biotechnol. v.57 Biotechnology and pullution monitoring: Use of molecular biomarkers in the aquatic environment Livingstone,D.R. https://doi.org/10.1002/jctb.5000570902
  13. Environmental Xenobiotics Cytochrome P450 in pollution monitoring: Use of cytochrome P4501A as a biomarker of organic pollution in aquatic and other organisms Livingstone,D.R.;M.Richardson(ed.)
  14. Mutat. Res. v.288 The single cell gel electrophoresis assay(comet assay): A European review McKelvey-Martin,V.J.;M.H.L.Green;P.Schmezer;B.L.Pool-Zobel;M. P. De Meo;A.Collins https://doi.org/10.1016/0027-5107(93)90207-V
  15. Mutat. Res. v.367 Micronucleus test in erythrocytes of Barbus plebejus (Teleostei, Pisces) from two natural environments: A bioassay for the in situ detection of mutagens in freshwater Minissi,S.;E.Ciccotti;M.Rizzoni https://doi.org/10.1016/S0165-1218(96)90084-1
  16. Ecotoxicol. Environ. Safety v.41 Detection of DNA strand breaks in isolated mussel (Mytilus edulis L.) digestive gland cells using the "Comet" assay Mitchelmore,C.L.;C.Birmelin;D.R.Livingstone;J.K.Chipman https://doi.org/10.1006/eesa.1998.1666
  17. Mutat. Res. v.399 DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring Mitchelmore,C.L;J.K.Chipman https://doi.org/10.1016/S0027-5107(97)00252-2
  18. Aquat. Toxicol. v.41 Detection of DNA strand breaks in brown trout (Salmo trutta) hepatocytes and blood cells using the single cell electrophoresis (comet) assay Mitchelmore,C.L.;J.K.Chipman https://doi.org/10.1016/S0166-445X(97)00064-7
  19. Mar. Evniron. Res. v.33 Application of the DNA alkaline unwinding assay to detect DNA strand breaks in marine bivalves Nacci,D.;S.Nelson;W.Nelson;E.Jackim https://doi.org/10.1016/0141-1136(92)90134-8
  20. Aquat. Toxicol. v.35 Detection of DNA damage in individual cells from marine organisms using the single cell gel assay Nacci,D.E.;S.Cayual;E.Jackim https://doi.org/10.1016/0166-445X(96)00016-1
  21. Toxicology and Aquatic Pollution: Physiological, Molecular and Cellular Approaches. Society for Experimental Biology Seminar Series v.57 Effect of genetic toxicants in aquatic organisms Nunn,J.W.;D.R.Livingstone;J.K.Chipman;E.W.Taylor(ed.)
  22. Exp. Cell Res. v.198 Factors influencing DNA migraton from individual cells subjects to gel electrophoresis Olive,P.L.;D.Wlodek;R.E.Durand;J.P.Banath https://doi.org/10.1016/0014-4827(92)90378-L
  23. Mutat. Res. v.375 Detection of subpopulations resistant to DNA-damaging agents in spheroids and murine tumors Olive,P.L;J.P.Banath;R.E.Durand https://doi.org/10.1016/S0027-5107(97)00011-0
  24. Biochem. Biophys. Res. Commun. v.123 Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells Ostling,D.;K.J.Johanson https://doi.org/10.1016/0006-291X(84)90411-X
  25. Enzyme Microb. Technol. v.30 Antigenotoxic effect of the peptides derive from bovine blood plasma proteins Park,K.J.;C.K.Hyun https://doi.org/10.1016/S0141-0229(02)00024-8
  26. Environ. Mol. Mutagen. v.26 Alkaline single cell gel (Comet) assay and genotoxicity monitoring using bullheads and carp Pandrangi,R.;M.Petras;S.Ralph;M.Vrzoc https://doi.org/10.1002/em.2850260411
  27. J. Chromatogr. B v.722 Single cell gel electrophoresis assay: Methodology and applications Rojas,E.;M.C.Lpez;M.Valverde https://doi.org/10.1016/S0378-4347(98)00313-2
  28. Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress DNA alterations Shugart,L.R.;J.Bickham;G.Jackim;G.McMahon;W.Ridley;J.Stein;R.J.Huggett(ed.);R.A.Kimerle(ed.);P.M.Mehrle(ed.);H.L.Bergman(ed.)
  29. Mutat. Res. v.113 Evaluation of the alkaline elution/rat hepatocyte assay as a predictor of carcinogenic/mutagenic potential Sina,J.F.;C.L.Bean;G.R.Dysart;V.I.Taylor;M.O.Bradley https://doi.org/10.1016/0165-1161(83)90228-5
  30. Exp. Cell Res. v.175 A simple technique for quantitiation of low levels of DNA damage in individual cells Singh,N.P.;M.T.McCoy;R.R.Tice;E.L.Schneider https://doi.org/10.1016/0014-4827(88)90265-0
  31. Ecotoxicol. Environ. Safety v.22 The genetic toxicology of organic compounds in natural waters and wastewaters Stahl,R.Jr. https://doi.org/10.1016/0147-6513(91)90051-P
  32. Bull. Environ. Contam. Toxicol. v.66 Genotoxicity of textile dye effluent of fish (Cyprinus carpio) measured using the Comet assay Sumathi,M.;K.Kalaiselvi;M.Palanivel;P.Rajaguru https://doi.org/10.1007/s00128-001-0020-3
  33. Environmental Mutagenesis The single cell gel/comet assay: A microgel electrophoretic technique for the detection of DNA damage and repair in individual cells Tice,R.;D.H.Philips(ed.);S.Venitt(ed.)
  34. Toxicol. Appl. Pharmacol. v.142 Route-specific cellular expression of cytochrome P4501A (CYP1A) in fish (Fundulus heteroclitus) following exposure to aqueous and dietary benzo[a]pyrene Van Veld, P. A.;W.K.Vogelbein;M.K.Cochran;A.Goksoyr;J.J.Stegeman https://doi.org/10.1006/taap.1996.8037
  35. Mutat. Res. v.375 The genetic toxicity of time: Importance of DNA-unwinding time to the outcome of single-cell gel electrophoresis assays Yendle,J.E.;H.Tinwell;B.M.Elliott;J.Ashby https://doi.org/10.1016/S0027-5107(97)00008-0
  36. Carcinogenesis v.12 Metabolism of benzo[a]pyrene and (-)-trans-benzo[α]pyrene-7,8-dihydrodiol by freshly isolated hepatocytes from mirror carp Zaleski,J.;R.A.Steward;H.C.Sikka https://doi.org/10.1093/carcin/12.2.167