참고문헌
-
FEBS Lett.
v.418
The C-terminus of yeast plasma membrane
$H^+$ -ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation Barley,R.;P.W.Piper https://doi.org/10.1016/S0014-5793(97)01359-8 - Mechanisms of Action of Food Preservation Procedures The preservation of foods by low pH Booth,I.R.;R.G.Kroll;G.W.Gould(ed.)
- J. Appl. Microbiol. v.85 Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: Is growth inhibition dependent on reduced intracellular pH? Bracey,D.;C.D.Holyoak;G.Nebe-von Caron;P.J.Coote https://doi.org/10.1111/j.1365-2672.1998.tb05271.x
-
J. Microbiol. Meth.
v.31
Determination of the intracellular pH (pH
$_i$ ) of growing cells of Saccharomyces cerevisiae: The effect of reduced-expression of the membrane$H^+$ -ATPase Bracey,D.;C.D.Holyoak;G. Nebe-von Caron;P.J.Coote https://doi.org/10.1016/S0167-7012(97)00095-X - Adv. Microb. Physiol. v.32 Organic acids: Chemistry, antibacterial activity and practical applications Cherrington,C.A.;M.Hinton;G.C.Mead;I.Chopra https://doi.org/10.1016/S0065-2911(08)60006-5
- FEMS Microbiol. Lett. v.130 Distribution of individual pH values in a population of the yeast Saccharomyces cerevisiae Cimprich,P.;J.Slavick;A.Kotyk https://doi.org/10.1111/j.1574-6968.1995.tb07727.x
- Yeast v.3 Effects of weak acids and external pH on the intracellular pH of Zygosaccharomyces bailli, and its implications in weak-acid resistance Cole,M.B.;M.H.J.Keenan https://doi.org/10.1002/yea.320030105
-
Arch. Microbiol.
v.173
Modification of plasma membrane lipid order and
$H^+$ -ATPase activity as part of the response of Saccharomyces cerevisiae to cultivation under mild and high copper stress Fernandes,A.R.;I.Sa-Correia https://doi.org/10.1007/s002030000138 -
Yeast
v.18
The activity of plasma membrane
$H^+$ -ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification Fernandes,A.R.;I.Sa-Correia https://doi.org/10.1002/yea.702 -
Arch Microbiol.
v.171
Activation of the
$H^+$ -ATPase in the plasma membrane of cells of Saccharomyces cerevisiae grown under mild copper stress Fernandes,A.R.;F.P.Peixoto;I.Sa-Correia https://doi.org/10.1007/s002030050671 - Biochim. Biophys. Acta v.1098 Characterization of proton fluxes across th cytoplasmic membrane of the yeast Saccharomyces cerevisiae Haworth,R.S.;B.D.Lemire;D.Crandall;E.J.Cragoe;L.Fliegel https://doi.org/10.1016/0005-2728(91)90011-C
- J. Bacteriol. v.181 The Saccharomyces cerevisiae weak-acid inducible ABC transports fluorescein an preservative anions from the cytosol by an energy-dependent mechanism Holyoak,C.D.;D.Bracey;P.W.Piper;K.Kuchler;P.J.Coote
- Kor. J. Appl. Microbiol. Biotechnol. v.23 Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant yeast for fuel alcohol production at high temperature Kim,J.W.;I.N.Jin;J.H.Seu
- Kor. J. Appl. Microbiol. Biotechnol. v.23 The fermentation characteristics of Saccharomyces cerevisiae F38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature Kim,J.W.;S.H.Kim;I.N.Jin
-
J. Microbiol. Biotech.
v.8
Antifungal activity of medium-chain (C6-C13) alkenals against, and their inhibitory effect on the plasma membrane
$H^+$ -ATPase of Saccharomyces Lee,J.R.;S.H.Lee;I.Kubo;S.D.Hong - Saccharomyces.(Biotechnology Handbooks) Culture systems Mattews,T.M.;C.Webb;M.F.Tuite(ed.);S.G.Oliver(ed.)
- J. Microbiol. Biotechnol. v.13 Genotoxicity assay using chromosomally-integrated bacterial recA::Lux Min,J.;M.B.Gu
- Mol. Microbiol. v.32 Stress factors acting at the level of the plasma membrane induce transcription via the stress response element (STRE) of the yeast Saccharomyces cerevisiae Moskvina,E.;E.M.Imre;H.Ruis https://doi.org/10.1046/j.1365-2958.1999.01438.x
- J. Microbiol. Biotechnol. v.13 Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377 Paik,S.K.;H.S.Yun;H.Y.Shon;I,Y.Jin
- FEMS Microbiol. Rev. v.11 Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae Piper,P.W. https://doi.org/10.1111/j.1574-6976.1993.tb00005.x
- EMBO J. v.17 The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast Piper,P.W.;Y.Mahe;S.Thompson;R.Pandjaitan;C.Holyoak;R.Egner;M.Muhlbauer;P.Coote;K.Kuchler https://doi.org/10.1093/emboj/17.15.4257
- Appl. Biochem. Biotech. v.45 Microbial liquefaction of lignite pretreated with diluted acid at elevated temperature and pressure Rao,A.;A.Maxey;B.B.Elmore;H.K.Huckabay https://doi.org/10.1007/BF02941789
- J. Gen. Microbiol. v.130 The effect of food preservatives on pH homeostasis in Escherichia coli Salmond,C.V.;R.B.Kroll;I.R.Booth
- Annu. Rep. ICBiotech. v.20 Genetic improvement of acid tolerant Saccharomyces cerevisiae for ethanol production from xylose and lignocellulosic hydrolysate: Part Ⅰ construction of high ethanol producing-acid tolerant S. cerevisiae hybrid for ethanol production from lignocellulosic hydrolysate by protoplast fusion technique Savitree,L.;T.Manee;S.Tastsuji;Y.Toshiomi
- Annu. Rev. Plant Physiol. Plant Mol. Biol. v.40 Structure and function of plasma membrane ATPase Serrano,R. https://doi.org/10.1146/annurev.pp.40.060189.000425
- Mol. Cell Biochem. v.22 Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae Serrano,R.
- The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics Transport across yeast vacuolar and plasma membranes Serrano,R.;J.R.Broach(ed.);E.W.Jones(ed.);J.R.Pringle(ed.)
- FEBS Lett. v.140 Intracellular pH of yeast cells measured with fluorescent probes Slavik,J. https://doi.org/10.1016/0014-5793(82)80512-7
- NREL/TP-580-26157 Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios Wooley,R.;M.Ruth;J.Sheehan;K.Ibsen
- Ann. Botany v.87 Using confocal laser scanning microscopy to measure apoplastic pH change in roots of Lupinus angustifolius L. in response to high pH Yu,Q.;J.Kuo;C.Tang https://doi.org/10.1006/anbo.2000.1297