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Abstract. Ultrasonic inspection system consist of the examination procedures,
equipment, and operators. The reliability of nondestructive testing is influenced by
the inspection environment, materials and types of defect. It is very difficult to
estimate the reliability of NDT due to the various factors. Piping inspection round
robin was conducted to quantify the capability of ultrasonic inspection during in-
service. In this study, the models for predicting the ultrasonic NDE reliability by
logistic model and linear regression model are discussed. The utility of the NDT
reliability assessment is verified by the analysis of the data from round robin test with

these models.
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1. INTRODUCTION

Nondestructive evaluation (NDE) is often the primary basis for establishing the
initial flaw size that is used as the basis safe life analysis of components, structure and
system. NDE methods are now applied in many industries to help guarantee the safety
and reliability of components and system. Ultrasonic NDE is one of the important
technologies in the life-time maintenance, and useful to inspect various types of
weldments. Recently, an advanced NDE technology has been developed that allows NDE
detectability and reliability issues to be treated quantitatively at all stages of the design

and manufacturing.
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In order to able to quantitatively estimate the influence that NDE will have on
assuring the reliability of a component, it is necessary to have three types of information:
1) a measure of the signals expected in a given NDE test of the component, 2) a measure
of the variabilities associated with the NDE test, and 3) a methodology for combining
those expected NDE signals and variabilities with various design parameters so that
decisions can be made on likelihood of the NDE method to be detected critical flaws
before the part fails.

The reliability of results in ultrasonic inspection system (equipment, procedure and
operator) is affected by its ability. It is reported that frequently existing in-service
inspection (ISI) ultrasonic testing (UT) methods can not detect even quite large defects in
mock-up specimens, fail to size the defect, and are dependent upon an inspector's skill
and physical condition. Furthermore, the reliability of ultrasonic ISI is influenced by the
inspection environment, other materials and types of defect. Therefore, it is very difficult
to estimate the reliability of NDE due to various factors.

In current practice, the probability of detection (POD) curve is normally given by
an assumed distribution function which can be characterized by a few free parameters
that are determined by empirical tests(Berens(1989)). However, if POD is obtained
through the use of models, then no distribution shape need be assumed a priori. In
analysis of a large number of nondestructive size data, a linear relation between the
logarithm of a measured flaw size and the logarithm of the true flaw size with normally
distributed deviation has proved satisfactory(Panhuise, et al.(1989)). In typical NDE
reliability studies, relatively few inspections are performed on each flaw in the specimen
set. The small number of samples which are typical of field inspection data lead to two
types of problems with POD models. It is possible to have a sample which is not a good
representation of the actual population, giving rise to poor estimate of POD. And, the
confidence levels on the POD-flaw size relationship are often extremely broad for small
sample sizes.

In this paper, the model for predicting the ultrasonic NDE reliability by logistic is
discussed. The utility of the NDT reliability (POD and sizing performance) is verified by
the analysis of the data from piping inspection round robin (PIRR) test with these models.

2.NDE RELIABILITY MODELS

2.1 POD Model

The reliability of NDE has been defined in Metals Handbook published by the
American Society of Metals as a quantitative measure of the efficiency of procedures in
finding flaws of specific type and size(Panhuise, et al.(1989)). The fundamental definition
of probability of detection is that the ratio of the number of flaws detected by a given
technique to the total number of actual flaws present in the inspected components. POD is
a well established measure of inspection performance that is directly related to important
issues such as accept-reject criteria, frequency and quality of inspection, etc.(Bray and

Stanley(1989)).
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Assume that each crack of size a in the potential population of cracks has its own
distinct crack detection probability density function of the detection probabilities is given
by fa(p). Figure 1 shows a schematic of distribution of detection probabilities for cracks of
fixed length. The conditional probability of a randomly selected crack from the
population having detection probability of p and being detected at the inspection is given
by pfu«(p)dp. The conditional probability of a randomly selected crack from the
population being detected is the sum of the

¢ 20D - [p £4p) @

Probebility of detection - wwimereme

Crack length Cirmaretiean s . i
Figure 1. Schematic of distribution of detection probabilities for cracks of fixed length

conditional probabilities over the range of . That is :

POD (a) = [ pf. (p)dp 0

Therefore, POD(a) is the average of the detection for cracks of size a.

Equation 1 implies that the POD(a) function is the curve through the averages of
the individual density functions of the detection probabilities. This curve is he regression
equation and provides the basis for testing assumptions about the applicability of various
POD(a) models. In Berens (1989), seven different functional forms were tested for
applicability to available POD data, and it was concluded that the log-logistics (log odds)
function best modeled the data and provided and acceptable model for the data sets of the
study. Note that the log odds model is commonly used in the analysis of binary (hit/miss)
data because of its analytical tractability and its close agreement with the cumulative log
normal distribution.

Two mathematically equivalent forms of the log odds model have subsequently
been used. The earliest form is given by :
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In the Equation 3 form, the log of the odds of the probability of detection (the left-
hand side of Equation 3) is expressed as a linear function of In(a) and is the source of
the name of the log odds models. Note that given the results of a large number of
independent inspections of the model can be fit with a regression analysis. This
regression approach will not be discussed further, because the maximum likelihood
estimates can be applied to much smaller samples of inspection results and can give
equivalent answers for large sample sizes.

Although the parameterization of Equation 2 and 3 are sensible in terms of estimation
through regression analyses, o and Pare not easily interpretable in physical terms. A
mathematically equivalent form of the log odds POD(a) model is given by :

POD(a) = {1 +exp— [%(m “a"‘ )]} @)
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In this form, i = In a, 5 where a,; is the flaw size that is detected 50% of the time,
that is, the median detectable crack size. The steepness of the POD(a) function
is inversely proportional to o; that is, the smaller the value of , the steeper the POD(a)
function. The parameters of Equation 2 and 4 are related by :

-a
_-a 5)

=78
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The log odds POD(a) function is practically equivalent to a cumulative log normal
distribution with the same parameters, u and o of Equation 4. Figure 2 compares the log
odds and cumulative log normal distribution functions for =0 and u=1. Equation 4 is
the form of the logistic model that will be used in the section "Analysis of Hit/Miss Data"
in this article.

2.2 Sizing Model

ASME Section XI, Appendix VIII provides requirements for performance
demonstration for ultrasonic examination procedures, equipment, and personnel used to
detect and size flaws(Appendix VIII of ASME B&PV Code Sex. XI). The operator shall
meet the requirements of Appendix VI and shall be qualified in accordance with VIII-
3000. Least-squares regression analysis is used to estimate the sizing performance. Figure
3 shows the definition of statistical parameters. Line A is linear regression line,

¥ = a + bx giving the best fit of n data points (x,,y,),...,(x,,y,) obtained by the least
square method. Where, y intercept :

a:zyi =bzxi
N N

slope of the regression line :

b= Nzxiyi —(in)(zyi)
Nlez _(in)z

And, line b is ideal line y = x (perfect UT measurements)
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Figure 2. Definition of statistical parameter

Correlation coefficient defined as

. nY %y = QX))
VX x =)y v -y

is a measure of "how well" the least square regression line fits the data with respect
to the ideal of y = x

3. PIPING INSPECTION ROUND ROBIN

Piping inspection round-robin (PIRR) was conducted in 2001 at the Korea
Institute of Nuclear Safety (KINS) to qualify the capability of ultrasonic inspection
for in-service and to address some aspects of reliability for this type of NDE. Two
inspection groups participated in the round robin a total of 9 companies that
comprised 15 commercial inspection teams employed by commercial in-service
inspection companies. An individual team (consisting of level II and Il inspectors)
conducted ultrasonic examinations on welded pipes. Two different types of flaws
were implanted into the specimens (EDM notches and thermal fatigue cracks). The
round-robin measured the detection and sizing capabilities of fifteen inspection
teams who employed procedures that met or exceeded ASME Code Section XI
requirements. The specimens are inspected under conditions that simulate as closely
as practical the actual application conditions. Tabulated sheets were provided for
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the tested personnel to keep their records. POD curves are also constructed for each
company and/or their participating operator. Superiority of the NDE performance
for the participating companies as well as their operator was thus revealed. Figure 3
shows the procedure of reliability analysis of round robin test results.
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Figure 3. The procedure of reliability analysis of round robin test

3.1 Design variables

Under usual field environment, POD shows various spectrum. Design
variables of a test are those which defines conditions of tests and materials
influencing spectrums of such various conditions. Here, a variable is a discrete
independent variable which does not influence other variables. Seven design
variables were selected to uniquely define an inspection condition. While more
variables could be added to this list, these seven were considered to be the most
important, and should account for most of the variation in the test results. The seven
variables are described in table 1.

Table 1. Design variables

Design Variable Inspection Conditions Defined by the Variables
. 304L Stainless Steel
Material Type

SA 312 TP347 Stainless Steel
Defect Type Thermal Fatigue Crack(TFC)
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EDM Noich
. Axial Crack
Defect Geometric Circumferential Crack
Defect Size : Blank, Size 1, Size 2, Size 3, Size 4
Inspection Group ISI Vendor and NDT Co. Ltd.
Inspection Team 15 Teams
Procedure Type ASME Code or Advanced

4. RELIABILITY DATA ANALYSIS
4.1 Relative Importance of Variables

The PIRR experiment was designed to determine the effect of important
inspection and material variables on detection performance. The statistical
significance of design variables is calculated on detection performance. The design
variables evaluated are the inspection variables and material variables. Table 2 and
3 present summaries of detection data obtained for each material in the PIRR. These
contingency tables present the basic data used to determine whether or not the listed
variables significantly affect detection. In these tables, POD and FCP (false call
probability; the probability that a blank grading unit receives any indication)
detection statistics are presented, as well as the number of inspection performed.
These tables demonstrates that detection in the defect size and type are highly
significant to detection performance.

4.2 POD Performance

Figure 4 shows a plot of the logistic function showing detection performances
of all the teams. This will means the result of detection skill of ultrasonic test in
Korea. As crack size increases, detection probability increases. POD curves were
constructed to plot the relationship of POD to crack depth and length as the
independent variables, using mathematical regression techniques to fit the curve to

Table 2. Effect of inspection variables

Group A Group B
Defect Size ASME | Advanced ASME ] Advanced
Blank
FCP 0.152 0.400 0.286 0.450
# Insp. 46 20 70 20
Size 1l
POD 0.350 0.063 0.071 0.063
# Insp. 40 16 56 16
Size 2
POD 0.519 0.583 0.548 0.417
# Insp. 27 12 42 12
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Size 3
POD 0.553 0.625 0.696 0.563
# Insp. 38 16 56 16
Size 4
POD 0.792 1.000 0.886 0.500
# Insp. 24 10 35 10

FCP : false call probability
POD : probability of detection
# Insp. : Number of inspection

Table 3. Effect of material variables

Size Size 1 Size 2 Size 3 Size 4
Type
EDM Notch
POD -- 0.800 0.800 -
# Insp. - 15 15 -
TFC
POD - 0.567 0.667 0.800
# Insp. -— 30 15 15
10 10 :
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Figure 4. Logistic curve fit to POD data with 95% bounds about all teams (a) POD
vs length, (b) POD vs depth

Table 4. Parameters of POD from logistic curve fit

Length Depth
Team ] o (1/mm) n o (1/mm)
All -1.768 1.072 0.096 0.935
Group A —0.428 0.854 0.171 0.899
Group B -0.551 0.832 -0.010 0.969
ASME -0.372 0.830 0.093 0.954
Advanced -0.514 0.770 -0.021 0.906

33
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the experimental data. The logistic curves are surrounded by 95% confidence bounds and
the raw POD points used in the fit are illustrated on the plots. Each POD point describes
the detection results on an individual defect in PIRR. In these results, statistical analysis
of POD hit/miss data using logistic POD model was found to be very feasible to the
reliability assessment of the NDE data sets. '

Table 4 summarizes the curve fits for POD vs. depth and length. Results are shown
for various inspection conditions and for various teams. The table lists the fit parameters
p for Equation 5, along with their standard deviations o. the results of the logistic fits for
the various inspection conditions are given in this table while Figure 4 is the regression
curve. A comparison of the two group indicates that the POD vs depth performance of
Group A is better than that of Group B.

4.3 Sizing Performance

_ Linear regression was employed to analyze sizing errors in both depth and length.
Table 5 presents the regression fits that relate true crack length to measured length. For
length sizing, the average regression slopes is close to zero, indicating relationship
between the measured and true depths. we find good performance compare to depth
sizing. Table 6 summarizes the fitted regression results for depth sizing. The table shows
that depth sizing results were very poor. Depth sizing capabilities are poor. These plots
confirm the results displayed in table 6. The visual overview of the sizing results is given
in figure 5, which plot the measured vs true depth for all teams.

Table 4. Summary of linear regression fits for defect length sizing

Team a b r M.D.(mm)
All 6.445 0.888 0.778 7.955
Group A 4.006 0.933 0.808 6.743
Group B 8.747 0.842 0.750 8.762
ASME 7.353 0.836 0.759 7.955
Advanced 3.238 1.049 0.842 7.955

a = intercept of y(x)

b = slope of y(x)

r = correlation coefficient
M.D. = mean deviation

Table 5. Summary of Linear Regression Fits for Defect Depth Sizing

Team a b r RMS(mm)
All 5.234 0.251 0.274 10.473
Group A 8.168 0.181 0.209 9.975
Group B 2.348 0.342 0.371 17.455
ASME 4.552 0.168 0.252 11.168
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Advanced | 8315 |  0.450 0.406 8.562
a = intercept of y{x)
b = slope of y(x)
r = correlation coefficient
RMS = root mean squared
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Figure 5. Regression fit of length and depth measurements of all teams

5. CONCLUDING REMARKS

The statistical reliability assessment of ultrasonic inspection system used logistic
probability model. The utility of the NDT reliability assessment is verified by the analysis
of the data from round robin test with this models. In case of performance of sizing,
length sizing showed excellency. However, depth sizing was proven to be less accurate. It
is necessary to supplement and develop methods that can improve the accuracy of length
sizing. When detecting defects in actual cracks, such as thermal fatigue crack, there is
higher possibility of which detection ratio and size measuring performance to get lower.
Therefore, in order to improve the reliability of in-service inspection using UT, it is
necessary to induce performance demonstration system and assess uncertainty of UT test
results to reflect them in the inspection results.

REFERENCES

V. E. Panhuise, et al. (1989), Quantitative Nondestructive Evaluation, in Metal Handbook,
9th ed., 17, 663-715.

Berens, A. P. (1989). NDE Reliability Data Analysis, Metals Handbook 17, ASM
International, Metals Park, Ohio, 689-701.



36 Model for Predicting Ultrasonic NDE Reliability

Bray, D. E. and.Stanley, R. K. (1989). Nondestructive Evaluation, McGraw-Hill Book Co.,
New York. '

Appendix VIII of ASME B&PV Code Sex. X1, Performance Demonstration for Ultrasonic
Examination System.

Ding Keqin (2000). A quantitative Method for Determining the Flaw Size in the Structure,
15th WCNDT, idn 107.

David S. Forsyth, Abbas Fahr, in Review of Progress in ONDE, 20, 2167,

Paliou, C. and Shinozuka, M. (1987). Reliability and Durability of Marine Structures, J.
Structural Eng., ASCE, 113-6, 1297.

Bogdanoff, J.L. and Kozin, F. (1985). Probabilistic Models of Cumulative Damage, John
Wiley & Sons.

Heasler, P. G. and Doctor, S. R. (1996). Piping Inspection Round Rbbin, NUREG/CR-
5068 PNNL-10475.

Raj, B., Jayakumar, T. and Thavasimuthu, M. (1997). Practical Non-Destructive Testing,
Narosa Publishing House, London, 133-139.



