DOI QR코드

DOI QR Code

A Session Allocation Algorithm for Fair Bandwidth Distribution of Multiple Shared Links

다중 공유 링크들의 공정한 대역폭 분배를 위한 세션할당 알고리즘

  • 심재홍 (조선대학교 인터넷소프트웨어공학부) ;
  • 최경희 (아주대학교 정보통신전문대학원) ;
  • 정기현 (아주대학교 전자공학부)
  • Published : 2004.04.01

Abstract

In this paper, a session allocation algorithm for a switch with multiple shared links is proposed. The algorithm guarantees the reserved bandwidth to each service class and keeps the delay of sessions belonging to a service class as close as possible even if the sessionsare allocated to different shared links. To support these qualities of services, a new scheduling model for multiple shared links is defined and a session allocation algorithm to decide a shared link to be allocated to a new session on the connection establishmentis developed based on the model. The proposed heuristic algorithm allocates a session to a link including the subclass with the shortest (expected) delay that subclasses of the service class the session belongs to will experience. Simulation results verify that a switch with multiple shared links hiring the proposed algorithm provides service classes with fairer bandwidth allocation and higher throughput, and guarantees reserved bandwidth better than the switch hiring other session algorithms. It also guarantees very similarservice delay to the sessions in the same service class.

본 논문에서 다중 공유 링크들을 가진 스위치를 위한 세션할당 알고리즘을 제안한다. 제안 알고리즘은 서비스 클래스들에게 사전에 예약된 대역폭을 보장하고, 동일한 서비스 클래스에 속한 세션들에게는 서로 다른 공유 링크를 통해 전송되어도 가능한 비슷한 지연을 제공하고자 한다. 이러한 QoS를 제공하기 위해 다중 공유 링크를 위한 새로운 스케줄링 모델을 정의하고, 이를 기반으로 새로운 세션의 연결 설정 시 이를 어떤 공유 링크에 할당할 것인지를 결정하는 경험적 세션할당 알고리즘을 제안한다. 제안된 알고리즘은 새로운 세션이 소속된 서비스 클래스의 각 링크에 할당된 세션들의 예측된 지연들 중 가장 작은 예측 지연을 가진 링크에게 새로운 세션을 할당한다. 모의실험을 통해 제안 알고리즘을 채택한 스위치가 다른 세션할당 알고리즘을 채택한 스위치에 비해 서비스 클래스들에게 보다 공정한 대역폭을 할당하고 높은 패킷 처리율을 제공하며 예약된 대역폭을 보다 확실히 제공한다는 것을 확인할 수 있었다. 또한 동일한 서비스 클래스의 세션들에게 보다 비슷한 서비스 지연을 제공한다는 것도 확인했다.

Keywords

References

  1. C. L. Scuba and E. H. Spafford, 'A Reference Model for Firewall Technology,' Proc. of the 13th Annual Computer Security Applications Conference (ACSAC), San Diego, CA, pp.133-145, Dec., 1997 https://doi.org/10.1109/CSAC.1997.646183
  2. S. Axelsson, 'Research in Intrusion Detection System: A Survey,' Technical Report 98-17, Dep. of Computer Engineering, Chalmers University of Technology, Dec., 1998
  3. L. Kencl and J. L. Boudec, 'Adaptive Load Sharing for Network Processors,' Proc. of IEEE INFOCOM 2002, New York, June, pp.545-554, 2002 https://doi.org/10.1109/INFCOM.2002.1019299
  4. R. Russo, L. Kencl, B. Metzler, and P. Droz, 'Scalable and Adaptive Load Balancing on IBM Power NP,' Technical Report RZ-3431(#93699), IBM Zurich Research Laboratory
  5. T. Wolf, P. Pappu, and M. A. Franklin, 'Predictive Scheduling of Network Processor,' Computer Networks, Vol.41, No.5, pp.601-621, Apr., 2003 https://doi.org/10.1016/S1389-1286(02)00452-8
  6. H. Zang, 'Service Disciplines for Guaranteed Performance Service in Packet-Switching Network,' Proc. of the IEEE, Vol.83, No.10, pp.1374-1396, Oct., 1995 https://doi.org/10.1109/5.469298
  7. A. K. Parekh and R. G. Gallager, 'A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks : The Single-Node Case,' IEEE/ACM Transaction on Networking, Vol.1, No.3, pp.344-357, June, 1993 https://doi.org/10.1109/90.234856
  8. D. Stiliadis and A. Varma, 'Rate-Proportional Servers : A Desing Methodology for Fair Queueing Algorithms,' IEEE/ACM Transaction on Networking, Vol.6, No.2, pp.164-174, Apr., 1998 https://doi.org/10.1109/90.664265
  9. A. Demmers, S. Keshav, and S. Shenker, 'Analysis and Simulation of a Fair Queueing Algorithm,' Journal of Internetworking Research and Experience, Vol.1, No.1, pp.3-26, Oct., 1990
  10. J. C. R. Bennett and H. Zang, 'WF2Q: Worst-Case Fair Weighted Fair Queueing,' Proc. of IEEE INFOCIM'96, San Francisco, California, pp.120-128, Mar., 1996
  11. J. C. R. Bennett and H. Zang, 'Hierarchical Packet Fair Queueing Algorithms,' IEEE/ACM Transaction on Networking, Vol.5, No.5, pp.675-689, Oct., 1997 https://doi.org/10.1109/90.649568
  12. S. Golestani, 'A Self-Clocked Fair Queueing Scheme for Broadband Applications,' Proc. of IEEE INFOCIM'94, Toronto, CA, pp.636-646, June, 1994 https://doi.org/10.1109/INFCOM.1994.337677
  13. L. Zang, 'VirtualClock : A New Traffic Control Algorithm for Packet Switching Networks,' ACM Transaction on Computer Systems, Vol.9, No.2, pp.101-124, May, 1991 https://doi.org/10.1145/103720.103721
  14. D. Stiliadis and A. Varma, 'Efficient Fair Queueing Algorithms for Packet Switched Networks,' IEEE/ACM Transaction on Networking, Vol.6, No.2, pp.175-185, Apr., 1998 https://doi.org/10.1109/90.664266
  15. F. M. Chiussi and A. Francini, 'A Distributed Scheduling Architecture for Scalable Packet Switches,' IEEE Journal on Selected Areas in Communication, Vol.18, No.12, pp.2665-2683, Dec., 2000 https://doi.org/10.1109/49.898749
  16. W. Stallings, 'Operating Systems: Internals and Design Principles,' 3rd ED., Prentice Hall, pp.394-396, 1998
  17. N. Ni and L. N. Bhuyan, 'Fair Scheduling and Buffer Management in Internet Routers,' Proc. of IEEE INFOCOM 2002, New York, June, 2002 https://doi.org/10.1109/INFCOM.2002.1019364