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Partial Diallel Cross Block Designs
For GCA Effectl)

Kuey-Chung Choi2) and Jung-Hwa Lee3)
Abstract

Partially balanced diallel cross designs with m~associate classes are defined and
two general methods of construction are presented. Two-associate class designs based
upon group divisible, triangular, and extended group divisible association schemes

obtained using the general methods are also given. Tables of designs for p<24 are
also provided.
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1. Introduction

Diallel crosses are commonly used to study the genetic properties of inbred lines in plant

and animal breeding experiments. Suppose there are p inbred lines and let a cross between

lines i and j be denoted by (7,7) with i< 7=1,2,--,p. Let % denote the total number
of distinct crosses in the experiment. Our interest lies in comparing the lines with respect to
their general combining ability (gca) parameters. The complete diallel cross (CDC) involves all

possible crosses among p parental lines with #.= p(p—1)/2 as discussed in detail by
Griffing (1956) who referred to it as type IV mating design. Gupta and Kageyama (1994) gave
a method of constructing balanced block designs for CDC using the nested balanced
incomplete block (BIB) designs of Preece (1967). Subsequently, Dey and Midha (1996), Das,
Dey and Dean (1998), Das and Ghosh (1999), Prasad, Gupta and Srivastava (1999), and Choi
and Gupta (2000), among others, gave further methods of constructing balanced diallel cross
block designs.

Complete diallel crosses involve equal numbers of occurrences of each of the p(p—1)/2

distinct crosses. If #: denotes the number of times that each cross appears in a complete
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diallel, then the experiment requires 7,= p(p—1)/2 crosses. When p is large, sometimes it
becomes impractical to carry out a balanced or even a partially balanced complete diallel

cross. In such situations ,only a subset of all possible p(p—1)/2 crosses is used in the
experiment, which is called a partial diallel cross (PDC). Das, Dean and Gupta (1998) and
Mukerejee (1997) gave some PDC block designs. Ghosh and Divecha (1997) obtained partially
balanced PDC and CDC block designs by forming all pairs of crosses between the treatment
labels within each block of a conventional incomplete block design. The purpose of this paper
is to define partially balanced partial diallel cross block (PBDCB) designs in a unified way
and to give some new general methods of constructing them. The PBDCB block designs are
defined in Section 2. Two general methods of construction and some classes of designs based
on group divisible, triangular and extended group divisible association schemes are given in

Section 3. Finally, tables of designs for p< 24 are provided in Section 4.
2. Preliminaries

Consider a block design D, for a diallel cross experiment involving #n,=pr/2 distinct
crosses laid out in & block of % crosses each, each cross replicated 7, times, with each line
contributing to # crosses. Let #; be the number of replications of cross (7,7),
i< =1,2,-,p, where

r. if the cross (i, j) occurs in D,
7’,']- = .
0 otherwise

Then, the total number of crosses #z in D, is given by

n= ﬁﬁ;:r,,: ren.=bk
Following Gupta and Kageyama (1994), the model for the data is assumed to be
Y=ypul,+t4g+d,8+¢ 2.1)
where Y is the mx1 vector of responses, u is the overall mean, 1, is the #x]1 vector of
I's and g=(g,,8,,".8,) and B= (By,B5,""",By) are the vectors of p gca effects and
b block effects respectively; the rectangular matrices 4,, 4, are the corresponding designs
matrices, and € is the zx1 vector os independent random errors with zero expectations and

constant variance ¢°. The information matrix C for estimating all pairwise comparisons
among the gca parameters is then given by

C= G__lk_NbNb' (2.2)

where G = (g;) is a symmetric matrix with g;=7, g;=7r; for i<{j=1,2,--,p, and N,
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is the pxb line versus block incidence matrix of the design. The matrix N, is the usual
incidence matrix ; it the present context, it is obtained by ignoring the crosses, and thus by
ignoring the crosses, and thus by considering 2% lines as the contents of a block. Note that
Nyl,=rl, NN, =2kl,.

Now consider two lines in each of the # crosses as the block contents of d designs D,
with block size £=2, and let N, denote the pxz incidence matrix of the block designs thus
obtained. Then G= N_N_. Thus, the information matrix C of equation can be written as

C=2(C,—C,) (2.3
where, taking lines as p treatments, C, and C_, are the usual information matrices for

designs with constant block size 2%k and 2 respectively.

Following Das and Ghosh (1999), we now present the definition of a balanced CDC block
design.

Definition 2.1. A diallel cross deigns D, will be called a balanced CDC block design with
parameters {p,n., b,7.k,A} if kC takes the form

ENN, = NN, = a(1,-$,)

for some positive constant a, where I, is the identity matrix of order p and J,=1,1,".
Now we define partially balanced diallel cross block designs. The definition requires the

concept of an m—association scheme for which a reference may be made to Raghavarao
(1971).

Definition 2.2. A PDC block design D; will be called an m—association class partially
balanced PDC block (PBDCB) design with parameters {p,#.,b,7 k, a;,a,,*, @, } if the
following holds for a given pair of lines B and y that are ith associates,

kA= Anan = @i
where A, , and A, , are the numbers of concurrences of the lines B8 and 7 in design
D, and D, respectively, and a; is a constant independent of the pair of ith associates

chosen, :=1,2,---,m. For CDC, D, will be called a partially balanced CDC block

(PBCDCB) design.
Note that for finding the number of within-block concurrences of two lines, the lines are
taken as the contents of a block. Also, since each of the 7, distinct crosses is replicated 7,

times, A, , equals 7, if the cross (B, 7) appears in the design and it is zero otherwise.

For a m—association class PBDCB design, we can write down the following spectral
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decomposition
EN_N,' — N,N,’ = ZmloiLi

" where the matrices L; are idempotent, with respective nonzero eigen values 6,

i=1,2,:-, m. These idempotent matrices depend only on the association scheme. The eigen
values @; can be obtained using the approach of John (1980, Section 9.5), and the idempotent

matrices L; can be obtained as described by Gupta and Singh (1989). The Moore-Penrose

generalized inverse of the matrix C of equation (2.2) is then given by

ct= k;’":]j} L,

3. Two general methods of construction

Two widely applicable methods of constructing PBDCB designs are presented in this
section. The methods are given first in Theorems 3.1 and 3.2. PBDCB designs obtained using
the two methods based on specific association schemes are then presented in Theorems 3.3 -
3.7.

Let D, be an m—association class PBIB design with parameters v=7p, b=05, r=r,,
k=2,41,A5,*,4,, such that A;=0 for #=#*s)=1,2,--,m, and A,=1, where
se {1,2,---,m}. For any association scheme, these designs can be obtained by taking all
possible distinct pairs of lines that are sth associates. Although D, is based upon an m—

association class scheme, it has only tow distinct values of the A parameters. In this sense

D, is equivalent to a two-associate class PBIB designs with a suitable defined association

scheme. Though D; need not be connected, N.N, is assumed to be of full-rank so that all

pairwise comparisons among gca parameters are estimable. We then have the following result.

Theorem 3.1. The existence of an m—association class PBIB designs D; with parameters
2,0, 7. k=2,A,=1,4;=0,i(#s)=1,2,-*,m, and the existence of a BIB design D, with
parameters v= by, b,, 75, k,,A implies the existence of an m—association class PBDCB
design with parameters {p, n,=b;, b=1by, r,=vy, k=ky, a,=A(b;— 1), a;=— 24,
(#s)=1,2,-,m}

Theorem 3.2. The existence of an a@—resolvable m—associate class PBIB design D; with
parameters P, b;,7,,k=2,4;=0 or 1,i=1,2,---,m implies the existence of an m—

associate class PBDCB design with parameters {p, n.=b,, b=r/a,r.=1, k= ap/2,
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a,=kA,—ar),i=1,2,, m}

Example 3.1. Let D, be a resolvable group divisible (GD) design having parameter p= 6,
by=12, r,=4, k=2, A;,=0, A,=1, with the following replication sets:

1st replication set : (1,3), (2,5), (4,6)

2nd replication set : (14), (2,6), (3,5)

3rd replication set : (1,5), (2,4), (3,6)

4th replication set : (1,6), (2,3), (4,5)

Then by taking each replication set as one block, Theorem 3.2 yields a PBDCB design with
parameters p=6, n,=12, b=4, r.=1, k=3, ay=—4, a,=—1.
We now present some GD, triangular, and extended group divisible (EGD) PBDCB designs.

3.1 GD designs
For GD designs, p= mn lines are arranged in m groups of size n each, where m,n are
positive integers. Then, a GD designs D; with parameters p=mn, b, =mn({n—1)/2,

n=n—1, k=2, A;=1, A;,=0 can always be constructed. Thus, we have the following
from Theorem 3.1.

Theorem 3.3. The existence of a BIB design D, with parameters v= mn(n—1)/2, b,

7y, Ry, A, where n =2, implies the existence of a GD PBDCB design with parameters
{0, n.=mn(n—1)/2, b=1b,, r.=r,, k=ky, a;=A(n—1) {n(m—2)+2}/2, a,=—(n—1)%2}

Example 3.2. For m=2,n=3, take D, as the GD design with parameter p=b,=6,
r1=k=2,A,=1,A4,=0 and D, as the BIB design with parameters v=6, b,=10, »,=5,
ky=3, A=2. Theorem 3.3. we have the following

Corollary 3.1 There exists a GD PBDCB design with parameter {p=4(¢t+1), n,=6(¢+1),
b=2(t+1)6t+5), r.,=6¢t+5, a,=6(2¢t—1), a,=—18}.

Similarly, using D, as the GD design with parameters p=mn, b;=n?m(m—1)/2,

rn=n(m—1), k=2,21;=0,4;=1 in Theorem 3.1, we have the following.

Theorem 3.4. The existence of a BIB design D, with parameters v=mn?(m—1)/2, by, 7,
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k,, A implies the existence of a GD PBDCB design with parameters {p, #n.= mn?(m—1)/2
b=by, r,.=1y k=ky, a;=—An*(m—1)(m—2)/2, ay=—An*(m—1)%}.

3.2 Triangular designs

Triangular designs have p=n(n—1)/2 lines, where # is an integer greater than 2. Then
for n=3, by taking all distinct pairs of lines that are first associates yields a triangular
design D, with parameters v=p=n(n—1)/2, b=n(n—1)(n—2)/2, n=2(n—2), k=2,
A;=1, A;=0. Using this triangular design in Theorem 3.1, we have the following.

Theorem 3.5. The existence of a BIB designs D, with parameters v=n(n—1)Xn—2)/2 ,
by, 73, ky A, where n =3, implies the existence of a triangular PBDCB design with

parameter.
{p, n.= n(n—l)(n"'Z)/Z , b= bz, Ye=17y, k= k2 al =/1(n—2)(n2—9n+ 16)/2 N aZ = "'4(71_2)2/1}
Similarly for #n >4, there also exists a triangular design D; with parameters

v=p=n(n—-1)/2, by=nn—1)(n—-2)n—-3)/8, ri=n-2)n—-3)/2, k=2, 2A,=0,
A, =1 obtained by interchanging the roles of the first and the second associates. Thus, we

have the following.

Theorem 3.6. The existence of a BIB design D, with parameters v=n(n—1)(n—2)n—3)/8
yby, 7y, Ry, A, where n2=4, implies the existence of a triangular PBDCB designs with
parameters
{(p.n.=n(n—1)(n—2)0(n—23)/8,b=by, r.= 1, a;,=A(n—2)(n—3)(9n— n*—12)/8,
k=ky, ay=—2A(n—2)*(n—23)*/4}.

3.3 Extended group divisible (EGD) designs
Hinkelmann and kempthorne (1963) defined the EGD association scheme as a generalization

of the GD association scheme. In an EGD design, p=11{= 1m;, where my; i1=1,2,-,f, and
f are positive integers. Further, the lines are labeled using f—digit numbers a;a,-a; ,
where

a;=0,1,,m—1, i=1,-,f Let x=(x,%;,", %), ;=0 or 1 i=1,2,-, f Then, two
treatments in the EGD scheme are x—associates where x;=1 if the sth factor occurs at the
same level in both the treatments and x;=0 otherwise. Let A(x) denote the number of times
two treatments which are x—associates occur together in the design. Note that A(x) depends

only on x and is independent of the specific pair of the x—associates chosen. The EGD
scheme was earlier considered by Nair and Rao (1948) and Shah (1959), and has been referred
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to as the binary number association scheme by Paik and Federer (1977). Adetailed study of
the EGD scheme is due to Hinkelmann (1964). Cleary, a total of 27—1 distinct values of
A(x) are possible in an EGD design. An EGD design in which only one of these values is
non-zero is a first-order design. see Gupta (1987). It is easy to verify that for an EGD
design, the number of x--associates of any treatment is given by

n(x) = IF_; (m;—1)' ™"
Let D, be a first-order EGD design with parameters p=1II_;m; b,=p{n(x)}/2,
r1=n(x),k=2. A first-order EGD design D, can be constructed for each of the distinct
values of xy=1(xy9,%9,"",%g), %5=0 or 1, giving a total of 2/—1 such first-order

designs. For each of these 2/—1 designs, we have the following.

Theorem 3.7. The existence of a BIB designs D, with parameters v= pn(x,)/2, by, 75,

ky, A implies the existence of an EGD PBDCB design with parameters
{b=IFm,; n.=pn(xy)/2, b= by, r.=1y, k= ky, a(x)) = An(x)[p—2n(x0)]/2,
a(x) =— {n(x,)}?A for x+ x,}, where xq= (21, %5, %4), £n=0 or 1.

Since the designs of Theorem 3.7 have only two distinct values of the « parameters, these
designs are equivalent to two-associate class PBDCB designs.

4. Table of designs

We now give GD, triangular, and EGD PBDCB designs for p< 24 obtained using
Theorems 3.2 - 3.7. The designs are presented in Tables 1-4. As noted earlier, since the
parameters @; of a PBDCB design have two distinct values, the designs are equivalent to

two-associate class PBDCB designs. For a two—-associate class PBDCB design we have

R 6,6°, if lines i and j are sth associates
var(g;,— g;) =

0202, otherwise
where s is as in Theorem 3.1, and ,, 6, are constants. Further,
L e, if lines ¢ and j arve sth associates
efg i— & j) =
ey, otherwise
where eff(@— Ej) denotes efficiency of the designs for estimating the elementary contrast
&;— g; relative to an appropriate randomized complete block design. The efficiencies e; and
e, were computed using equation (16) of Singh and Hinkelmann (1998). Theses two

efficiencies of PBDCB designs are also presented in the tables.
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The parameters of the BIB designs D, used in constructing the PBDCB designs of Tables
1-3 are given by v=n,,b,r=r,k,A with A=r_(k—1)/(n,~1). In Tables 1 and 2, the
column labeled as D,(m, n) gives the values of m and »n for GD designs D, used in

Theorems 3.3 and 34. For p < 24. the EGD designs obtained using Theorem 3.7 were found
to be equivalent to GD designs. Thus EGD PBDCB designs are not being listed separately as
these designs are included in Table 1. GD designs D; used in constructing the designs of

Table 4 also have A;=1 and A(i#s)=0, i=1,2, and the values of m,% and s are given

in the column labeled as D,(m, n,s)

Table 1. GD PBDCB designs obtained using Theorem 3.3

b n, b 7, k a a, e e, | Dy(m,n)
6 6 15 5 2 -2 -4 0375 | 0500 2,3
6 6 10 5 3 4 -8 0.500 | 0.667 2,3
6 6 6 5 5 8 -16 0.600 | 0.800 2,3
6 6 15 10 4 12 -24 0.563 | 0.750 2,3
8 12 44 11 3 6 -18 0566 | 0.679 24
8 12 22 11 6 15 -45 0.707 | 0.849 24
9 9 12 4 3 5 -4 0429 | 0571 3,3
9 9 36 3 2 5 -4 0.321 | 0.429 3,3
9 9 18 8 4 15 -12 0.482 | 0643 3,3
9 9 12 8 6 25 -20 0536 | 0.714 3,3
9 9 9 8 8 35 -28 0563 | 0.7%0 33
9 9 18 10 5 25 -20 0514 | 0.686 3,3
10 20 38 19 10 36 -144 0.799 | 0914 2,5
12 12 44 11 3 16 -8 0.400 | 0.533 43
12 12 33 11 3 24 -12 0.450 | 0.600 43
12 12 22 11 6 40 -20 0.500 | 0.667 4,3
12 18 102 17 3 18 -18 0518 | 0.621 34
12 18 34 17 9 72 ~72 0.690 | 0.828 34
12 30 58 29 15 70 -350 | 0.850 | 0.944 2,6
14 42 82 41 21 120 -720 | 0.881 | 0.961 2,7
15 15 35 7 3 11 -4 0.385 | 0.513 53
15 15 15 7 7 33 -12 0495 | 0.659 53
15 15 15 8 8 44 -16 0.505 | 0.673 53
15 15 35 14 6 55 -20 0.481 | 0.641 53
15 30 58 29 15 196 ~224 0.780 | 0.891 35
16 24 184 23 3 30 -18 0.497 | 0.596 44
16 24 46 23 12 165 -99 0.683 | 0.820 44

16 56 56 11 11 14 -98 | 0.850 | 0915 28
16 56 70 15 12 21 -147 | 0.857 | 0.923 2,8
18 45 9 1 5 20 -25 | 0.69% | 0.773 3,6
18 45 55 11 9 40 -50 | 0.773 | 0.859 3,6
18 45 45 12 12 60 75 | 0.797 | 0.885 36
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Table 1. GD PBDCB designs obtained using Theorem 3.3<A 4>

20 40 40 13 13 96 -64 0.750 | 0.857 45
20 30 290 29 3 42 -17 0485 | 0.582 54
21 21 30 10 7 51 -12 0.474 | 0.632 7,3
21 21 42 12 6 51 -12 0461 | 0.614 7,3
21 21 35 15 9 102 -24 0.491 0.655 7,3
24 36 420 35 3 54 -18 0.478 | 0574 6,4
Table 2. GD PBDCB designs obtained using Theorem 3.4
b ne b 7. k a; (42 e, () Dl(m,n)
6 12 44 11 3 -8 -32 0.214 | 0.606 3.2
6 12 33 11 4 -12 -48 0.307 | 0.682 3,2
6 12 22 11 6 -20 -80 0.437 | 0.758 3,2
8 24 46 23 12 -132 | -396 | 0.630 | 0.893 42
9 27 39 13 9 -36 -144 0.437 | 0.791 3,3
9 27 27 13 13 -54 -216 | 0533 | 0.822 3,3
10 40 40 13 13 -96 -256 | 0.624 | 0913 5,2
12 48 94 47 24 -368 | -1472 | 0.611 0.861 34
4 106 53 27 =702 | -2106 | 0.716 | 0.925 4,3

Table 3. GD PBDCB designs obtained using Theorem 3.5 and 3.6

p | me | b | v | k| e | o | e | e
Theorem 3.5
10 30 58 29 15 -84 =504 | 0.846 | 1.000
15 60 118 59 30 145 -2900 | 0.883 | 0.993
Theorem 3.6
10 15 35 7 3 6 -9 0536 | 0.357
10 15 15 7 7 18 =27 0.689 | 0459
10 15 15 8 8 24 -36 0.703 | 0.469
10 15 35 14 6 30 -45 0.670 | 0.446
15 45 99 11 5 9 -36 0771 | 0.617
15 45 55 11 9 18 =72 0.857 | 0.685
15 45 45 12 12 27 -108 | 0.883 | 0.707
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Table 4. GD PBDCB designs obtained using Theorem 3.7

b 7, b e k a @, e 2 a | Dym,n,s)
6 12 4 1 3 -4 -1 1.000 | 0.833 1 32,2
6 12 2 1 6 -8 -2 1.000 | 0.833 2 32,2
8 12 3 1 4 2 -6 0.778 | 0.933 1 24,1
8 24 6 1 4 -6 -2 1.000 | 0.933 1 422
9 27 3 1 9 -12 -3 1.000 | 0.857 2 33,2
10 40 8 1 5 -8 -3 1.000 | 0.964 1 52,2
10 40 4 1 10 -16 -6 1.000 | 0.964 2 52,2
12 18 3 1 6 3 -3 0.733 | 0.880 1 34,1
12 30 5 1 6 1 -5 0.880 | 0.978 1 2,6,1
12 48 8 1 6 -8 -2 1.000 | 0.880 1 34,2
12 54 9 1 6 -9 -3 1.000 | 0.943 1 432
12 60 10 1 6 -10 -4 1.000 | 0.978 1 6,2,2
14 84 6 1 14 -24 -10 1.000 | 0.985 2 12,2
15 (5 5 1 15 -20 -5 1.000 | 0.897 2 35,2
16 56 7 1 3 1 ol 0.918 | 0.989 1 2,81
16 112 14 1 - 16 -28 -12 1.000 | 0.989 2 32,2
18 45 5 1 9 4 -5 0.850 | 0.944 1 3,6,1
18 108 6 1 18 -24 -6 1.000 | 0911 2 36,2
18 162 8 1 18 -32 -14 1.000 | 0.992 2 9,2,2
18 135 15 1 9 ~15 -3 1.000 | 0.981 1 6,3,2
20 30 3 1 10 7 -3 0.704 | 0.844 1 54,1
20 150 15 1 10 -15 -5 1.000 | 0.960 1 452
20 180 18 1 10 -18 -8 1.000 | 0.993 1 10,2,2
20 160 8 1 20 -16 -6 1.000 | 0.974 2 5472
22 220 10 1 22 -40 -18 1.000 | 0.995 2 11,22
24 36 3 1 12 9 -3 0.697 | 0.836 1 6,4,1
24 60 5 1 12 7 -5 0.836 | 0.929 1 46,1
24 &4 7 1 12 5 -7 0.896 | 0.965 1 38,1
24 192 8 1 24 -32 -8 1.000 | 0.929 2 3,8,2
24 216 18 1 12 -18 -6 1.000 | 0.965 1 46,2
24 252 21 1 12 -21 -9 1.000 | 0.990 1 83,2
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