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Posterior Inference in Single-Index Models

Chun Gun Parkl), Wan-Yeon Yang?), Yeong-Hwa Kim3)
Abstract

A single-index model is useful in fields which employ multidimensional regression
models. Many methods have been developed in parametric and nonparametric
approaches. In this paper, posterior inference is considered and a wavelet series is
thought of as a function approximated to a true function in the single-index model.

The posterior inference needs a prior distribution for each parameter estimated. A
prior distribution of each coefficient of the wavelet series is proposed as a hierarchical
distribution. A direction [ is assumed with a unit vector and affects estimate of the
true function. Because of the constraint of the direction, a transformation, a spherical
polar coordinate 8, of the direction is required. Since the posterior distribution of the
direction is unknown, we apply a Metropolis-Hastings algorithm to generate random
samples of the direction. Through a Monte Carlo simulation we investigate estimates
of the true function and the direction.

Keywords : Single-index model, Wavelet series, Daubechies wavelet, Posterior inference,
Hierarchical distribution, Metropolis-Hastings algorithm
1. Introduction

A single-index model is useful in a variety of fields such as econometrics, biometrics, and
etc. with nonlinear regression models involving linear regression models (McCullagh and
Nelder, 1983) and is defined as the form

¥ = g(X'B) +¢, i=1,..,n 1)
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where X* = (zy,..,2y), B=(By,...,0)7 with ||8]l = 1, g is an unknown function and ¢
is a random variable with zero mean and bounded variance.

This model (1) has been mainly analysed in parametric and nonparametric views. That is,
kernel smoothing(Hardle, et al., 1993), local linear methods (Carroll, et al., 1997), average
derivatives (Stoker 1986), and penalized splines (Yu and Ruppert, 2002) had been introduced.
In these methods the assumption of the function ¢ is a smoothing function.

To analyse the model (1) we consider the posterior inference which requires prior
distributions of parameters estimated. When a wavelet series is approximated to a function
from (1), we can assume that the function is any function in I? spaced). A prior distribution
of each coefficient of the wavelet series is defined as a hierarchical distribution.

The wavelet series is constructed based on two basis function, a scaling function ¢(z) and
a wavelet function ¥(z) where z's must be equally spaced. From (1), however, X'f's
shouldn’t be equally spaced for all directions. To overcome this problem is to replace the
unequally spaced values by equally spaced values and proceed as in the equally spaced case.

Because of the constraint of the direction, ||8]| = 1, to implement the posterior inference
the transformation, a sphere polar coordinate, of the direction should be necessary. There are
two advantages for the transformation that one of them is reducing dimension and the other
independency for all elements of the polar coordinate. The posterior distribution of the
direction is not integrable and we propose a Metropolis—Hastings which require a proposal
distribution. A normal distribution is thought of as the proposal distribution for the direction.
Its variance and initial coefficients of the wavelet series may need to be chosen carefully.

Section 2 describes wavelet-based posterior inference for the single-index model. Section 3
presents a simulation study. Finally, Section 4 discusses the results.

2. Wavelet-based posterior inference

2.1 Wavelet series

A wavelet series is an good approximation to a square integrable function. We can
represent the function of the single-index model as the wavelet series which is

9(X°B) = k;ZSJ‘,kfﬁJok (X°B) + ];'kgz dith (X B) (2)

for any integer J, and an integer m given. Since all functions, ¢'s and %¥’s, are orthogonal

basis functions, in the literature all coefficients are defined as follows

4) A function 7 is in the I? space if r is square integrable, that is,

ri=([ rere) <=
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Sk = _/ (2)¢g(2)dz and dj = f 9(2) iy (2)dz.

The functions, ¢ and 7, use a dilation j and a translation k, that is,
¢jk(z) =22 (2¥z—k) and ¢jk(z) = 2jﬂ¢(2j2_ k).
From the approximation (2) the assumption of the resolution J; is zero (Miiller and Vidakovic,
1999).

2.2 Likelihood function and prior distributions

To implement the posterior inference a likelihood function and prior distributions of
parameters estimated are required. From (1) the errors €¢’s are independent and follow a

normal distribution with mean zero and bounded variance o From (1) and (2) let

= (sok, dy, B, 0”) and the likelihood function is

P(Y |2, values given) = | [P(y;192, values given)
o1
(3)

= (2m0") Roxp(— o5 S RIw)

w3

where

R (y;)=y;— Z Soudor (X°B) — ; Z dixie (X'B).

k€Z

Since the direction parameter is the unit vector and it is difficult to determine a sign,
positive or negative, of the last element of the direction parameter in the posterior inference,
we propose a spherical polar coordinate v= (v, ..., ’yp_l) for the unit vector which makes the

posterior inference easier. The nature of the polar coordinate is independency for all elements
of the polar coordinate and reducing dimension to p— 1. This transformation is as follows

p—a
t,(v) = B, = sin (v,) ] [ cos (Yp—a)ya=1,. (4)

b=0
for sin () =cos(y,) =1, 0 <6, < 2m, and ——2—<01 2, l=2,..,p—1. Based on

the polar coordinate, that is, X*'8=X'T(y) where 8= T(y) = (t,(7),...t,(v))", we can

rewrite the likelihood function
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P(Y |2, values given) = P(y,|$2", values given) (5)
where 2= (s, dy, B, 0?) and 2" = (So1 di, Y, a?).

For notational simplicity, let ‘'~' mean ‘distributed as’, let N(u,n) denote a normal
distribution with mean g and variance 7, let JG(a,{) denote an inverse gamma distribution,
and let P(- ) generically denote a probability density function. We propose a prior
distribution for each coefficient from (2) as a normal distribution which have mean zero and
variance depending on its resolution level and a hyperparameter 7 (Miiller and Vidakovic,

1999)
so ~ N(0,7) and dylr ~ N(0,7271). ®)
The prior distributions of 7 and ¢ are as follows
T~ IG(a,),) and ¢® ~ IG(a,, \,). @)

We define a prior distribution for the direction parameter 7 from (4) as a joint uniform
distribution

1 (1 Y-
P(’Y)=g(?)p 2 ®)
where v is (p—1) X1 and 0 <y < 2, —%<7a<%, a=2,...,.p—1.

2.3 MCMC methods

Before setting a MCMC scheme, we assume that Daubechies wavelets are used and the
boundaries of the translations k of the coefficients sg,d; are [L,, U;] and

(L, U;], §=0,1,..,m (Park, 2003).
From (3) and (6)-(8) the joint distribution of the parameter space 2" is calculated. Given
initial values for the parameter space .Q*, each parameters is updated from each posterior

distribution, one at time. A MCMC scheme is as follows

1. Generate ¢® from the complete inverse gamma conditional distribution.

2. Generate 7 from the complete inverse gamma conditional distribution.
3. Generate sy from the complete normal conditional distribution.
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4. Generate djk from the complete normal conditional distribution.
5. Generate y from a normal proposal distribution with mean ~', a previous

direction, and variance v and compute the acceptance probability

Pylw (= 7)) )
T P(ylw(=7))

a(y,y) = min(l

Steps 1-4 are Gibbs samplers and Step 5 is Metropolis-Hastings (Metropolis, et al, 1953).
The choices of v and initial values are described in Subsection 2.4.

2.4 Initialization

Before initializing all parameters except for the variance parameter ¢, we need maximum
range of X3. When Daubechies wavelets is applied to representing a wavelet series, we can
calculate the ranges of the translation k for ¢y (z) and ¥y (2) based on the supports of the

Daubechies wavelets and the maximum range of X3. (Park, 2003)

Since the direction parameter is affecting estimates of the coefficients of the wavelet series,
it is important to obtain good initial values the direction parameter. Here we implement a
preliminary step with 1000 iterations for several starting directions for choosing a good initial
direction, that is, we obtain a direction from these directions by minimizing the residual sums
of squares calculated based on the estimated mean function through 1000 iterations
corresponding to each starting direction. For the initialization of the coefficients, we use the
orthogonal property of the wavelet function as follows (Hart, 1997)

~ " ’U) +wi_
Sor = y; (w; _wi—l)%k(—z_z—l)

=
n

= yi./‘Wi %,k(z)dz

b= Wi—y

and

e i wi +’U),~_
djk = Yi (wi _wi—1)¢jk(_2_1')

1=

n

= yi‘/Wi 1/)o,lc(z)dz

= Wi

where 2;) is the d4th smallest of the ordered XB, wy=24) wu= z(z)+;(z+1)’

)
I
=
M

ey =1, W) = Z4). The initial value of 7 is generated from its prior. An initial choice
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of a variance of the normal proposal distribution for the direction parameter - is

ocl=
n—

O g,

where (' is arbitrary and _(}i is the wavelet approximation for a starting direction. In practice,

given an initial direction, the variance 5§ of the MCMC is determined until a variance &?Y is

found that yields an acceptance rate around 60% for the Metropolis-Hastings steps.
The hyperparameters of 7 and ¢ are o, =, =1 and A, =\, =1 so that the mean of the

prior of T or ¢? is infinite.

3. Simulation study

We estimate a cosine function which is approximated to only the smooth part in the
wavelet series (1). To implement posterior inferences, we generate 20 datasets and based on
Section (2.4) we repeat the MCMC scheme twice with the first 1000 iterations to initialize the
direction parameter  and the second 10000 iterations including a burn-in periods (1000 or
2000). The estimates of parameters of interest are posterior means calculated from their
samples.

(Example) The number of observations is n =200 and the direction parameter is 2 X 1.

The function is g(z;) = cos (2rz,/5) where z = X' and each covariate is independently

generated from normal distribution with mean zero and variance 1.5% or 32, respectively. Table

1 shows the result and Figures 1 show the estimates of the mean function.
4. Conclusion

Since the wavelet series has advantage of localization, we can make weaker the assumption
of the function. To estimate parameters of interest, posterior inferences are proposed. The
transformation of the direction parameter which is proposed as polar coordinates is very
useful to generate samples from the posterior distribution of the direction parameter. The
simulation study which treat three different directions for a smoothing function shows that for
the direction a variance of a normal proposal distribution is carefully selected.

For a maximum resolution m fixed all wavelet coefficients are estimated. In further study
the selection of a maximum resolution and shrinkage or thesholding rules are of interest in
the single-index model.
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Table 1. Simulation results for ¥; = cos (27z,/6) +¢;, i=1,...,n, where 2, = X' T(v) and
€i ~iid N(0;02).

True values direction vy function g(z) = cos (z)
(o7 bias” mse bias mse
0.9 |93 258¢—3  6.66e—6 —2.26e—3  2.05e—3
' 25 8.22¢—~4  6.75e—T7 —2.80e—3 1.85e—3
o5 |03 9.5le—4  9.04e—7 —1.11e—2 8.33¢—3
' 25 | —1.66e—3  2.77e—6 —-127e—2 8.1le—3

100
* bials=L (y—";) where '3/ is estimated for each dataset.
100 = J J
1 N
** mse:T()ﬁE(7_7j)2
1 n
##% bias=T5o ZZ(g(z )—g;(2))

J=li=

where g (%) is estimated for each dataset.

*Ek* MSE= 100 o EZ )—éj(z,-))2

Figure 1 For the true direction v = 0.3 and ¢ = 0.2 and 0.5, posterior estimated mean
function with a true function (solid) and a estimated function (dotted line).
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