References
- Nature v.403 Different types of diffuse large b-cell lymphoma identified by gene expression profiling Alizadeh,A.A.;Eisen,M.B.;Davis,R.E.;Ma,C.;Lossos,I.S.;Rosenwald,A.;Boldrick,J.C.;Sabet,H.;Tran,T.;Yu,X.;Powell,J.L.;Yang,L.;Marti,G.E.;Moore,T.;Hudson,Jr.J.;Lu,L.;Lewis,D.B.;Tibshirani,R.;Sherlock,G.;Chan,W.C.;Greiner,T.C.;Weisenburger,D.D.;Armitage,J.O.;Warnke,R.;Levy,R.;Levy,R.;Wilson,W.;Grever,M.R.;Byrd,J.C.;Brown,P.O.;Bostein,D.;Staudt,L.M. https://doi.org/10.1038/35000501
- Proceedings of the National Academy of Science v.97 Singular value decomposition for genome-wide expression data prcessing and modeling Alter,O.;Brown,P.O.;Bostein,D. https://doi.org/10.1073/pnas.97.18.10101
- Nature Genetics v.21 Gene expression informatics - it's all in your mine Basset,D.E.;Eisen,M.B.;Boguski,M.S. https://doi.org/10.1038/4478
- Journal of Computational Biology v.7 Tissue classification with gene expression profiles Ben-Dor,A.;Bruhn,L.K.;Friedman,N.;Nachman,L.;Schummer,M.;Yakini,Z. https://doi.org/10.1089/106652700750050943
- Bioinformatics v.20 Adjustment of systematic microarray data biases Beito,M.;Parker,J.;u,Q.;쪄,J.;Xiang,D.;Perou,C.M.;Marron,J.S. https://doi.org/10.1093/bioinformatics/btg385
- Journal of the Royal Statistical Society.Ser.B. v.57 Controlling the false discovery rate: A practical and powerful approach to multiple testing Benjamini,Y.;Hochberg,Y.
- Tha Annals of Statistics v.29 The control of the false discovery rate in multiple testing under dependency Benjamini,Y.;Yekutieli,D. https://doi.org/10.1214/aos/1013699998
- Bioinformatics v.18 Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering Bozinov,D.;Rahnenfuhrer https://doi.org/10.1093/bioinformatics/18.5.747
- Federation of European Biochemical Societies Letters v.480 Gene expression data analysis Brazma,A.;Vilo,J. https://doi.org/10.1016/S0014-5793(00)01772-5
- Machine Learning v.24 Bagging predictors Breiman,L.
- Classification and Regression Trees Breiman,L.;Friedman,J.H.;Olshen,R.;Stone,C.J.
- Proceedings of the National Academy of Science v.97 Knowledge-based analysis of microarray gene expression data by using support vector machines Brown,M.P.S;Grundy,W.N.;Lin,D.;Cristianini,N.;Sugnet,C.W.;Furey,T.S.;Ares,Jr.M.;Haussler,D. https://doi.org/10.1073/pnas.97.1.262
- Journal of Biomedical Optics v.2 Ratio-based decisions and the quantitative analysis of cDNA microarray images Chen,Y.;Dougherty,E.R.;Bittner,M.L. https://doi.org/10.1117/12.281504
- Bioinformatics v.18 no.9 Ratio statistics of gene expression levels and applicatins to microarray data analysis Chen,Y.;Kamat,V.;Dougherty,E.R.;Bittner,M.L.;Meltzer,P.S.;Trent,J.M. https://doi.org/10.1093/bioinformatics/18.9.1207
- Science v.282 The transcriptional program of sporulation in budding yeast Chu,S.;DeRisi,J.;Eisen,M.;Mulholland,J.;Boststein,D.;Brown,P.O.;Herskowitz,I. https://doi.org/10.1126/science.282.5389.699
- Journal of Computational Biology v.9 Identifying and quantifying sources of variation in microarray data using high-density cDNA membrance arrays Coombes,K.R.;Highmith,W.E.;Krogmann,T.A.;Baggegly,K.A.;Stivers,D.N.;Abruzzo,L.V. https://doi.org/10.1089/106652702760277372
- Bioinformatics v.19 Boosting for tumor classification with gene expression data Dettling,M.;Buhlmann,P. https://doi.org/10.1093/bioinformatics/btf867
- Bioinformatics v.19 Unsupervised feature selection via two-way ordering in gene expression analysis Ding,C.H.Q. https://doi.org/10.1093/bioinformatics/btg149
- Journal of Computation Biology v.9 Inference from clustering with application to gene-expression microarrays Dougherty,E.R.;Barrera,J.;Brun,M.;Kim,S.;Cesar,R.M.;Chen,Y.;Bittner,M.;Trent,J.M. https://doi.org/10.1089/10665270252833217
- Nature Genetics Supplement v.21 Expression profiling using cDNA microarrays Duggan,D.J.;Bittner,M.;Chen,Y.;Meltzer,P.;Trent,J.M. https://doi.org/10.1038/4434
- Journal of the American Statistical Association v.97 Comparison of methods for the classification of tumors using gene expression data Dodoit,S.;Fridlyand,J.;Speed,T. https://doi.org/10.1198/016214502753479248
- Bioinformatics v.19 Bagging to improve the accuracy of a clustering procedure Dudoit,S.;Fridlyand,J. https://doi.org/10.1093/bioinformatics/btg038
- Bioinformatics v.19 Non-linear normalization and background correction in one-channel cDNA microarray studies Edwards,D. https://doi.org/10.1093/bioinformatics/btg083
- Journal of the Americans Statistical Association v.96 Empirical Bayes analysis of a microarray experiment Efron,B.;Tibsirani,R.;Storey,J.D.;Tusher,V. https://doi.org/10.1198/016214501753382129
- Proceedings of the National Academy of Science v.95 Cluster analysis and display of genome-wide expression patterns Eisen,M.;Spellman,P.T.;Brown,P.O.;Botstein,D. https://doi.org/10.1073/pnas.95.25.14863
- Annals of Eugenics v.7 The use of multiple measurements in taxonomic problems Fisher,R.A. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
- Technical Report, School of Aviation Medicine Discriminatory analysis, nonparametric discrimination: consistency properties Fix,E.;Hodges,J.
- Journal of Computer and System Sciences v.55 A decision -theoretic generalization of on-line learning and an application to boosting Freund,Y.;Schapire,R.E. https://doi.org/10.1006/jcss.1997.1504
- Journal of the Royal Statistical Society,Ser.B. v.64 Operating characteristics and extensions of the false discovery rate problem Genovese,C.;Wasserman,L. https://doi.org/10.1111/1467-9868.00347
- Science v.286 Molecular classification of cancer:class discovery and class prediction by gene expression monitoring Golub,T.R.;Slonim,D.K.;Tamayo,P.;Huard,C.;Gaasenbeek,M.;Mesirov,J.P.;Coller,H.;Loh,M.L.;Downing,J.R.;Caligiuri,M.A.;Bloomfield,C.D.;Lander,E.S. https://doi.org/10.1126/science.286.5439.531
- Journal of Computational Biology v.8 Unfolding of microarray data Goryachev,A.B.;Macgregor,P.F.;Edwards,A.M. https://doi.org/10.1089/106652701752236232
- Genome Biology v.2 Supervised harvesting of expression trees Hastie,T.;Tibshirani,R.;Botstein,D.;Brown,P.O. https://doi.org/10.1186/1471-2105-2-1
- Proceedings of the National Academy of Science v.97 Fundamental patterns underlying gene expression profiles: Simplicity from complexity Holster,N.S.;Mitra,M.;Maritan,A.;Cieplak,M.;Banavar,J.R. https://doi.org/10.1073/pnas.150242097
- Proceedings of the National Academy of Science v.98 Dynamic modeling of gene expression data Holster,N.S.;Martian,A.;Cieplak,M.;Fedroff,N.V.;Banavar,J.R. https://doi.org/10.1073/pnas.98.4.1693
- Journal of the American Statistical Association v.97 Bayesian models for gene expression with DNA microarray data Ibrahim,J.G.;Chen,M-H.;Gray,R.J. https://doi.org/10.1198/016214502753479257
- Journal of Computational Biology v.7 Analysis of variance for microarray data Kerr,M.K.;Martin,M.;Churchill,G.A. https://doi.org/10.1089/10665270050514954
- Proceedings of the National Academy of Science v.98 Bootstrapping cluster analysis: Assessing the reliability of conclusions microarray experiments Kerr,M.K.;Churchill,G.A. https://doi.org/10.1073/pnas.161273698
- Self-Organizing Maps Kohonen,T.
- Journal of Computational Biology v.9 no.1 Improved background correction for spotted DNA microarrays Kooperberg,C.;Fazzio,T.G.;Delrow,J.J.;Tsukiyama,T. https://doi.org/10.1089/10665270252833190
- Statistica Sinica v.12 Plaid models for gene expression data Lazzeroni,L.;Owen,A.
- Proceedings of the National Academy of Science v.97 Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations Lee,M.T.;Kuo,F.C.;Whitemore,G.A.;Sklar,J. https://doi.org/10.1073/pnas.97.18.9834
- Bioinformatics v.19 Classification of multiple cancer types by multicategory support vector machines using gene expression data Lee,Y.;Lee,C-K. https://doi.org/10.1093/bioinformatics/btg102
- Nature Genetics no.SUP.21 High-density synthetic oilgonucleotide arrays Lipshutz,R.J.;Fordor,S.;Gingeras,T.;Lockhart,D.
- Nature Biotechnology v.14 Expression monitoring by hybridization to high-density oligonucleotide arrays Lockhart,D.J.;Dong,H.;Byrne,M.C.;Follettie,M.T.;Gallo,M.V.;Chee,M.S.;Mittmann,M.;Wang,C.;Kobayashi,M.;Horton,H.;Horton,H. https://doi.org/10.1038/nbt1296-1675
- Statistica Sinica v.12 Replicated microarray data Lonnstadt,I.;Speed,T.
- Jourma of Computational Biology v.8 On differential variability of expression ratios : Improving statistical inference about gene expression changes from microarray data Newton,M.A.;Kendziorski,C.M.;Richmond,C.S.;Blattner,F.R.;Tsui,K.W.
- Biometrics v.58 DNA microarray experiments: Biological and technological aspects Nguyen,D.V.;Arpay,A.B.;Wang,N.;Carroll,R.J. https://doi.org/10.1111/j.0006-341X.2002.00701.x
- Bioinformatics v.18 Deriving quantitative conclusions from microarray expression data Olshen,A.B.;Jain,A.N. https://doi.org/10.1093/bioinformatics/18.7.961
- Proceedings of the National Academy of Science v.16 Distinctive gene expression patterns in human mammary epithelial cells and breast cancers Perou,C.M.;Jeffrey,S.S.;van de Rijn,M.;Rees,C.A.;Eisen,M.B.;Ross,D.T.;Pergamenschikov,A.;Williams,C.F.;Zhu,S.X.;Lee,J.C.;Lashkari,D.;Shalon,D.;Brown,P.O.;Botstein,D.
- Journal of Computational Biology v.9 A paradigm for class prediction using gene expression profiles Radmacher,M.D.;McShane,L.M.;Simon,R. https://doi.org/10.1089/106652702760138592
- Bioinformatics v.19 Identifying differentially expressed genes using false discovery rate controlling procedures reiner,A.;Yekutieli,D.;Benjamini,Y. https://doi.org/10.1093/bioinformatics/btf877
- Pattern Recognition and Neural Networks Ripley,B.D.
- Nature Genetics v.24 Systematic variation in gene expression patterns in human cancer cell lines Ross,D.T.;Scherf,U.;Eisen,M.B.;Perou,C.M.;Rees,C.;Spellman,P.;Iyer,V.;Jeffrey,S.S.;Van de Rijn,M.;Waltham,M.;Pergamenschikov,A.;Lee,J.C.;Lashkari,D.;Shalon,D.;Myers,T.G.;Weinstein,J.N.;Botstein,D.;Brown,P.O. https://doi.org/10.1038/73432
- Journal of Cellular Biochemistry v.80 Analyzing high-density oligonucleotide gene expression array data Schadt,E.E.;Li,C.;Su,C.;Wong,W.H. https://doi.org/10.1002/1097-4644(20010201)80:2<192::AID-JCB50>3.0.CO;2-W
- Journal of Cellular Biochemistry v.84 Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data Schadt,E.E.;Li,C.;Ellis,B.;Wong,W.H. https://doi.org/10.1002/jcb.10073
- Science v.270 Quantitative monitoring of gene expression patterns with a complementary DNA microarray Schena,M.;Shalon,D.;Davis,R.W.;Brown,P.O. https://doi.org/10.1126/science.270.5235.467
- Nature Genetics v.24 Systematic variation in gene expression patterns in human cancer cell lines Scherf,U.;Ross,D.T.;Waltham,M.;Smith,L.H.;Lee,J.K.;Kohn,K.W.;Reinhold,W.C.;Meyers,T.G.;Andrews,D.T.;Scudiero,D.A.;Eisen,M.B.;Sausville,E.A.;Pommier,Y.;Bostein,D.;Brown,P.O.;Weinstein,J.N. https://doi.org/10.1038/73439
- Statistical Science v.18 Statistical challenges in functional genomics(with discussion) Sebastiani,P.;Gussoni,E.;Kohane,L.S.;Ramoni,M.F. https://doi.org/10.1214/ss/1056397486
- Annals Review of Psychology v.46 Multiple hypothesis testing Shaffer,J.P. https://doi.org/10.1146/annurev.ps.46.020195.003021
- Methods and Protocols,To appear Statistical issues in cDNA microarray data analysis,Functional Genomics Smyth,G.K.;Yang,Y.H.;Speed,T.
- Molecular Biology of the Cell v.9 Comprehensive identification of cell cycle-regulated genes of the yeast saccaromyces cerevisiae by microarray hybridization Spellman,P.T.;Sherlock,G.;Zhang,M.Q.;Iyer,V.R.;Andres,K.;Eisen,M.B.;Brown,P.O.;Bostein,D.;Futcher,B. https://doi.org/10.1091/mbc.9.12.3273
- Journal of the Royal Statistical Society Ser.B. v.64 A Direct approach to false discovery rates Storey,J.D. https://doi.org/10.1111/1467-9868.00346
- Proceedings of the National Academy of Science v.96 Interpreting patterns of gene expression with self-organizing mpas: Methods and applications to hematopoietic differentiation Tamayo,P.;Slonim,T.;Mesirov,J.;Zhu,Q.;Kitareewan,S.;Dmitrovsky,E.;Lander,E.S.;Golub,T.R. https://doi.org/10.1073/pnas.96.6.2907
- Technical Report,Department of Health Research and Policy Clustering methods for the analysis of dna microarray data Tibshirani,R.;Hastie,T.;Eisen,M.;Ross,D.T.;Botstein,D.;Brown,P.O.
- Proceedings of the National Academy of Science v.99 Diagnosis of multiple cancer types by shrunken centroids of gene expression Tibshirani,R.;Hastie,T.;Narasimhan,B.;Chu,G. https://doi.org/10.1073/pnas.082099299
- Nucleic Acids Research v.29 Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects Tseng,G.C.;Oh,M-K;Rohlin,L.;Liao,J.C.;Wong,W.H. https://doi.org/10.1093/nar/29.12.2549
- Proceedings of the National Academy of Science v.98 Significance analysis of microarrays applied to the ionizing radiation response Tusher,V.G.;Tibshirani,R.;Chu,G. https://doi.org/10.1073/pnas.091062498
- Statistical Learning Theory Vapnik,V.N.
- Bioinformatics v.20 A generalized likelihood ratio test to identify differentially expressed genes from microarray data Wang,S.;Ethier,S. https://doi.org/10.1093/bioinformatics/btg384
- Resampling-based Multiple Testing: Examples and Methods for P-value Adjustment Westfall,P.H.;Young,S.S.
- Bioinformatics v.19 New normalization methods for cDNA microarray data Wilson,D.L.;Buckley,M.J.;Helliwell,C.A.;Wilson,I.W. https://doi.org/10.1093/bioinformatics/btg146
- Journal of Computational Biology v.8 Assessing gene significance from cDNA microarray expression data via mixed models Wolfinger,R.D.;Gibson,G.;Wolfinger,E.D.;Bennett,L.;Madadeh,H.;Bushel,P.;Afshari,C.;Paules,R.S. https://doi.org/10.1089/106652701753307520
- Journal of Computational and Graphical Statistics v.11 Comparison of methods for image analysis on cDNA microarray data Yang,Y.H.;Buckley,M.J.;Dudoit,S.;Speed,T.P. https://doi.org/10.1198/106186002317375640
- Proceedings of SPIE Normalization for cDNA microarray data in Microarrays: Optical Technologies and Informatics Yang,Y.H.;Dudoits,S.;Luu,P.;Speed,T.P.