References
- Nature v.333 Quantitative assessement of world-wide contamination of air, water and soils by trace metals Nriagu,J.O.;Pacyna https://doi.org/10.1038/333134a0
- Occup Med v.8 Environmental transformantion of toxic metals Wade,M.J.;David,B.K.;Carlisle,J.S.;Klein,A.K.;Valoppi,L.M.
- Biol Trace Res v.32 Toxic effects of chromium and its compounds Baruthio,F. https://doi.org/10.1007/BF02784599
- World Health Organization v.49 Monographs on the evaluation of carcinogenic risks in humans. Chromium, nickel and welding International Agency for Research on Cancer https://doi.org/10.1021/jf970489o
- Arch Biochem Biophys v.85 Chromium (Ⅲ) and the glucose tolerance factor Schwarz,K.;Mertz,W. https://doi.org/10.1016/0003-9861(59)90479-5
- Nutr Rev v.56 Interaction of chromium with insulin: a progress report Mertz,W. https://doi.org/10.1007/BF02541505
- Mutat Res v.168 Cellular uptake, cytotoxic and mutagenic effects of insoluble chromic oxide in V79 Chinese hamster cells Elias,Z.;Poirot,O.;Schneider,O.;Daniere,M.C.;Terzetti,F.;Guedenet,J.C.;Cavelier,C. https://doi.org/10.1111/j.1365-2621.1952.tb16737.x
- Am J Physiol v.244 Kinetics of trace element chromium (Ⅲ) in the human body Lim,T.H.;Sargent,T.;Kusubov,N.
- Drug Metab Dispos v.22 Urinary excretion of chromium by humans following chromium picolinate: implications for biomonitoring Gargas,M.L.;Norton,R.L.;Paustenbach,D.J.;Finley,B.L.
- Tech Res Ser WHO World Health Organization
- FASEB J v.9 A prediction of chromium (Ⅲ) accumulation in humans from chromium dietary supplements Stearns,D.M.;Belbruno,J.J.;Wetterhahn,K.E.
- Chem Res Toxicol v.10 Microprobe X-ray absorption spectroscopic determination of the oxidation state of intracellular chromium following exposure of V79 Chinese hamster lung cells to genotoxic chromium complexes Dillin,C.T.;Lay,P.A.;Cholewa,M.;Legge,G.J.F.;She McCarthy,G. https://doi.org/10.1021/tx970010m
- Environ Res v.2 Purification and chromium-excretory function of low-molecular-weight, chromium binding substances from dog liver Wada,O.;Wu,G.Y.;Yamamoto,A.;Manabe,S.;Ono,T. https://doi.org/10.1007/BF02540996
- J Inorg Biochem v.22 Distribution and chromium-binding capacity of a low-molecular-weight, chromium-binding substance in mice Yamamoto,A.;Wada,O.;Ono,T. https://doi.org/10.1016/0162-0134(84)80018-5
- Free Radic Biol Med v.18 Oxidative mechanism in the toxicity of metal ions Stohs,S.J.;Bagchi,D. https://doi.org/10.1016/0891-5849(94)00159-H
- J Am Coll Toxicol v.8 Chromium (Ⅵ) toxicity : Uptake, reduction and DNA damage Standeven,A.M.;Wetterhahn,K.E. https://doi.org/10.3109/10915818909009118
-
Sci Total Environ
v.71
Uptake of
$^51Cr$ (Ⅵ) by human erythrocytes: evidence for a carrier-mediated transport mechanism Ottenwalder,H.;Wiegand,H.J.;Bolt,H.M. https://doi.org/10.1016/0048-9697(88)90237-9 - Fed Proc v.39 Chromium (Ⅲ) trisacetylacetonate: an absorbable, bioactive source of chromium Anderson,M.;Riley,D.;Rotruck,J.
- Biochem Biophys Res Commun v.163 Evidence that chromium is an essential factor for biological activity of low molecular-weight chromium binding substance Yamamoto,A.;Wada,O.;Manabe,S. https://doi.org/10.1016/0006-291X(89)92119-0
- Biochemistry v.15 Chromium oligopeptide activates insulin receptor tyrosine kinase activity Davis,D.M.;Vincent,J.B.
- J Am Coll Nutr v.18 Mechanisms of chromium action: low-molecular-weight chromium-binding substance Vincent,J.B. https://doi.org/10.1080/07315724.1999.10718821
- Biochemistry v.35 A biologically active form chromium may activate a membrane phosphotyrosine phosphatase David,C.M.;Sumrall,K.H.;Vincent,J.B. https://doi.org/10.1021/bi960328y
- Biochemistry v.36 Chromiun oligopeptide activates insulin receptor tyrosine kinase activity David,C.M.;Vincent,J.B. https://doi.org/10.1021/bi963154t
- CRC Crit Revie Toxicol v.27 Toxicity and carcinogenicity of Cr(Ⅵ) in animal models and humans Costa,M. https://doi.org/10.3109/10408449709078442
- Carcinogenesis v.15 Reaction of Cr(Ⅵ) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: Role of Cr(Ⅳ)-mediated Fenton-like reaction Shi,X.;Mao,Y.;Knapton,A.D.;Ding,M.;Rojanasakul,Y.;Gannett,P.M.;Dalal,N.S.;Liu,K. https://doi.org/10.1093/carcin/15.11.2475
- Free Radical Biol Med v.10 Chemical determination of free radical-induced damage to DNA Dizadaroglu,M. https://doi.org/10.1016/0891-5849(91)90080-M
- Mutat Res v.214 Is lipid peroxidation associated with DNA damage? Brambilla,G.;Martelli,A.;marinari,U.M. https://doi.org/10.1016/0027-5107(89)90205-4
- Carcinogenesis v.16 Chromium (Ⅵ)-induced nuclear factor-κB activation in intact cells via free radical reactions Ye,J.Zhang,X.;Young,H.A.;Shi,X. https://doi.org/10.1093/carcin/16.10.2401
- Res Commun Mol Pathol Phamacol v.97 Comparative induction of oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinate Bagchi,D.;Bagchi,M.;Balmoori,J.;Ye,X.
- Chem Biol Interact v.75 Mechanisms of chromium toxicity in mitochondria Ryberg,D.;Alexander,J. https://doi.org/10.1016/0009-2797(90)90114-3
- Mutat Res v.238 Genotoxicity of chromium compounds De Flora,S.;Bagnasco,M.;Serra,D.;Zanacchi,P. https://doi.org/10.1016/0165-1110(90)90007-X
- Arch Toxicol v.51 Embryotoxicity of chromium:distribution in pregnant mice and effect on embryonnic cells in vitro Danielsson,B.R.;Dencker,L.;Khayat,A.;Orsen,I.
- Reprod Toxiod v.6 Analysis of protective activity on N-acetylcysteine against teratogenicity of heavy metals Endo,A.;Watanabe,T.
- Kiasato Arch Exp Med v.63 Uptake and distribution of chromium in isolated rat hepatocytes and its relation to cellular injury Ueno,S.;Susa,N.;Furukawa,Y.
- Biochem Biophys Res Commun v.210 Chromium (Ⅲ) induced abnormalities in human lymphocyte cell proliferation: evidence for apoptosis Rajaram,R.;Nair,B.U.;Ramasami,T. https://doi.org/10.1006/bbrc.1995.1679
- Food Cosmet Toxicol v.13 Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats Ivankovic,S.;Preussmann,R. https://doi.org/10.1016/S0015-6264(75)80298-7
- FASEB J v.9 Chromium (Ⅲ) picolinate produces chromosome damage in Chinese hamster ovarian cells Steams,D.M.;Wise,J.P.Sr;Patierno,S.R.;Wetterhahn,K.E.
- J Trace Elem Exp Med v.12 Chromium and parenteral nutrition Jeejeebhoy,K.N. https://doi.org/10.1002/(SICI)1520-670X(1999)12:2<85::AID-JTRA5>3.0.CO;2-Z
- J Nutr v.126 no.SUP. Safety limits for nutrients Hathcock,J.N.
- Regul Toxicol Pharmacol v.26 no.SUP. Chromium as an essential nutrient for humans Anderson,R.A. https://doi.org/10.1006/rtph.1997.1136
- Diabetes v.29 Beneficial effects of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects Offenbacher,E.G.;Pi Sunyer,F.X. https://doi.org/10.2337/diabetes.29.11.919
- Proc Alltech Annu Spymp 10th Stress effets on chromium nutrition of humans and animals. In Biotechnology in the Feed Industry Anderson,R.A.
- Diabetes v.46 Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes Anderson,R.A.;Cheng,N.Bryden,N.A.;Polansky,M.M.;Cheng,N. https://doi.org/10.2337/diabetes.46.11.1786
- J Dairy Sci v.79 Effects of supplemental chromium on production of cytokines by mitogon-stimulated bovine peripheral bood mononucleal cells Burton,J.L.;Nonnecke,B.J.;Dubeski,P.L.;Elasser,T.H.;Mallard,B.A. https://doi.org/10.3168/jds.S0022-0302(96)76600-6
- J Anim Sci v.75 Effect of shipping and chromium supplementation on performance response, and disease resistance in steers Kegley,E.B.;Spears,J.W.;Brown,T.T.Jr.
- Biol Trace Elem Res v.55 Can elevated chromium induce somatopsychic responses? Lovrincevic,I.Leung,F.Y.;Alfieri,M.A.H.;Grace,D.M. https://doi.org/10.1007/BF02784177
- J Nutr Med v.3 Somatopsychological effects of chromium supplementation Schrauzer,G.H.;Shrestha,K.P.;Arce,M.F. https://doi.org/10.3109/13590849208997960
- Ann Intern Med v.126 Chronic renal failure after ingestion of over-the-counter chromium picolinate [letter] Wasser,W.G.;Feldman,N.S.;D'Agati,V.D.
- Ann Phamacother v.32 Chromium picolinate toxicity Cerulli,J.;Grabe,D.W.;Gauthier,I.;Malone,M.;McGoldrick,M.D. https://doi.org/10.1345/aph.17327
- Am J Clin Nutr v.66 Vitamins and minerals: efficacy and safety Hathcock,J.N.
Cited by
- Antioxidant and Anti-Inflammatory Activities of Extracts from Eugenia caryophyllata Thunb. vol.31, pp.5, 2016, https://doi.org/10.7318/KJFC/2016.31.5.481
- Synergistic antiradical action of natural antioxidants and herbal mixture for preventing dioxin toxicity vol.21, pp.2, 2012, https://doi.org/10.1007/s10068-012-0062-9
- Biological Activities of Mesembryanthemum crystallinum (Ice plant) Extract vol.25, pp.6, 2015, https://doi.org/10.5352/JLS.2015.25.6.638
- The Effects of Syzygium aromaticum extract Spread on the Allergic Contact Dermatitis induced by DNCB vol.26, pp.4, 2013, https://doi.org/10.6114/jkood.2013.26.4.001
- The Antioxidant Effect of Portulaca oleracea Extracts and Its Antimicrobial Activity on Helicobacter pylori vol.24, pp.3, 2011, https://doi.org/10.9799/ksfan.2011.24.3.306
- Antioxidant and Anti-Inflammatory Activities of Eugenol and Its Derivatives from Clove (Eugenia caryophyllata Thunb.) vol.40, pp.10, 2011, https://doi.org/10.3746/jkfn.2011.40.10.1361
- Antioxidant activity and physiological properties of Moringa (Moringa oleifera Lam.) leaves extracts with different solvents vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.831
- Comparison of Antioxidant Activities of Radish Bud (Raphanus sativus L.) According to Extraction Solvents and Sprouting Period vol.42, pp.11, 2013, https://doi.org/10.3746/jkfn.2013.42.11.1767
- The Effects of Pharmacopuncture(Eugenia caryophyllata THUNB.) on the High Fat Diet-induced Obese ICR Mice vol.30, pp.3, 2013, https://doi.org/10.13045/acupunct.2013007
- Antioxidative Activity and Nitrite Scavenging Effect of the Composites Containing Medicinal Plant Extracts vol.17, pp.8, 2007, https://doi.org/10.5352/JLS.2007.17.8.1135
- Physiological activities of natural color powders and their mixtures vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.80
- Antioxidant and Antiobesity Activities of Various Color Resources Extracted from Natural Plants vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.165
- Effect of Drying and Extraction Methods on Antioxidant Activity of Gnaphalium affine D. DON vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.695
- 큰느타리버섯(Pieurotus eryngii) 조다당체 분획의 항산화 및 항종양활성 vol.33, pp.10, 2004, https://doi.org/10.3746/jkfn.2004.33.10.1589
- 건조 방법에 따른 와송의 항산화 효과 vol.37, pp.5, 2008, https://doi.org/10.3746/jkfn.2008.37.5.605
- 유지 기질에 대한 와송 추출물의 항산화 효과 vol.18, pp.8, 2004, https://doi.org/10.5352/jls.2008.18.8.1106
- 마카 추출액의 생리활성 효과 vol.38, pp.7, 2004, https://doi.org/10.3746/jkfn.2009.38.7.817
- 마카(Lepidium meyenii)의 부위별 함유성분 및 항산화 활성 비교 vol.23, pp.8, 2004, https://doi.org/10.20878/cshr.2017.23.8.013
- 용매별 정향 추출물의 항산화 및 신경세포 보호 효과 vol.32, pp.6, 2017, https://doi.org/10.7318/kjfc/2017.32.6.583
- 용매별 정향 추출물의 항산화 및 신경세포 보호 효과 vol.32, pp.6, 2017, https://doi.org/10.7318/kjfc/2017.32.6.583
- Effect of Polygonum multipolarum extract on the allergic reaction of NC/Nga mice causing atopic dermatitis vol.37, pp.1, 2020, https://doi.org/10.12925/jkocs.2020.37.1.66