DOI QR코드

DOI QR Code

Antioxidant Activities of Clove by Extraction Solvent

용매별 정향 추출물의 항산화효과

  • Dong, Seok (Institute of Food Industry and Biotechnology, Department of Food and Biotechnology Hankyong National University) ;
  • Jung, Seung-Hyun (Ottogi Research Center) ;
  • Moon, Ju-Soo (Institute of Food Industry and Biotechnology, Department of Food and Biotechnology Hankyong National University) ;
  • Lee, Sung-Gab (Institute of Food Industry and Biotechnology, Department of Food and Biotechnology Hankyong National University) ;
  • Son, Jong-Yeon (Institute of Food Industry and Biotechnology, Department of Food and Biotechnology Hankyong National University)
  • 동석 (국립한경대학교 식품생물공학과 식품생물산업연구소) ;
  • 정승현 (오뚜기중앙연구소) ;
  • 문주수 (국립한경대학교 식품생물공학과 식품생물산업연구소) ;
  • 이성갑 (국립한경대학교 식품생물공학과 식품생물산업연구소) ;
  • 손종연 (국립한경대학교 식품생물공학과 식품생물산업연구소)
  • Published : 2004.04.01

Abstract

This study was investigated on antioxidant activities of water, methanol and ether extracts of clove. The extraction yields of water, methanol and ether extracts were 34.7, 21.4 and 17.0%, respectively. Total phenolic contents of water, methanol and ether extracts were 23.1, 55.7 and 34.9%, respectively. Eugenol contents were 6.1 and 8.1% in methanol and ether extracts, but it was not detected in water extract. Electron donating abilities of water, methanol and ether extract were 36.1, 30.9 and 29.7%, respectively. In linoleic aicd system, the ether extract showed more high antioxidant activity than water and methanol extracts. The antioxidant activity of ether extract was almost equal that of $\alpha$-tocopherol, but weaker than that of BHT In linoleic acid emulsion system, the water extract showed higher or stronger antioxidant activity than methanol and ether extracts. Antioxidant activities in linoleic acid emulsion substrates were in order of BHT >water extract>methanol extract>ether extract> $\alpha$-tocopherol.

본 연구는 정향추출물(물, 메탄올 및 에테르)의 항산화 효과를 리놀레인산 기질 및 리놀레인산 에멀젼기질에서 비교, 검토하였다. 물, 메탄올 및 에테르용매에 따른 정향의 총페놀 함량은 23.1, 42.8, 34.9%로 메탄올>에테르>물 추출물 순이었다. Eugenol 함량은 메탄올 추출물의 경우 6.1%이었고 에테르 추출물 8.1%이었으며 물 추출물에서는 검출되지 않았다. 정향 추출물의 DPPH 소거효과는 물 추출물 경우 36.1%, 메탄을 추출물의 경우 30.9%, 에테르 추출물의 경우 29.7%로 나타났다. 리놀레인산 기질에서의 항산화 효과는 BHT>에테르 추출물> $\alpha$-tocopherol>메탄올 추출물>물 추출물의 순이었다. 리놀레인산 에멀젼 시스템에서의 항산화 효과는 BHT>물 추출물>메탄올 추출물>에테르 추출물> $\alpha$-tocopherol의 순이었다.

Keywords

References

  1. Nature v.333 Quantitative assessement of world-wide contamination of air, water and soils by trace metals Nriagu,J.O.;Pacyna https://doi.org/10.1038/333134a0
  2. Occup Med v.8 Environmental transformantion of toxic metals Wade,M.J.;David,B.K.;Carlisle,J.S.;Klein,A.K.;Valoppi,L.M.
  3. Biol Trace Res v.32 Toxic effects of chromium and its compounds Baruthio,F. https://doi.org/10.1007/BF02784599
  4. World Health Organization v.49 Monographs on the evaluation of carcinogenic risks in humans. Chromium, nickel and welding International Agency for Research on Cancer https://doi.org/10.1021/jf970489o
  5. Arch Biochem Biophys v.85 Chromium (Ⅲ) and the glucose tolerance factor Schwarz,K.;Mertz,W. https://doi.org/10.1016/0003-9861(59)90479-5
  6. Nutr Rev v.56 Interaction of chromium with insulin: a progress report Mertz,W. https://doi.org/10.1007/BF02541505
  7. Mutat Res v.168 Cellular uptake, cytotoxic and mutagenic effects of insoluble chromic oxide in V79 Chinese hamster cells Elias,Z.;Poirot,O.;Schneider,O.;Daniere,M.C.;Terzetti,F.;Guedenet,J.C.;Cavelier,C. https://doi.org/10.1111/j.1365-2621.1952.tb16737.x
  8. Am J Physiol v.244 Kinetics of trace element chromium (Ⅲ) in the human body Lim,T.H.;Sargent,T.;Kusubov,N.
  9. Drug Metab Dispos v.22 Urinary excretion of chromium by humans following chromium picolinate: implications for biomonitoring Gargas,M.L.;Norton,R.L.;Paustenbach,D.J.;Finley,B.L.
  10. Tech Res Ser WHO World Health Organization
  11. FASEB J v.9 A prediction of chromium (Ⅲ) accumulation in humans from chromium dietary supplements Stearns,D.M.;Belbruno,J.J.;Wetterhahn,K.E.
  12. Chem Res Toxicol v.10 Microprobe X-ray absorption spectroscopic determination of the oxidation state of intracellular chromium following exposure of V79 Chinese hamster lung cells to genotoxic chromium complexes Dillin,C.T.;Lay,P.A.;Cholewa,M.;Legge,G.J.F.;She McCarthy,G. https://doi.org/10.1021/tx970010m
  13. Environ Res v.2 Purification and chromium-excretory function of low-molecular-weight, chromium binding substances from dog liver Wada,O.;Wu,G.Y.;Yamamoto,A.;Manabe,S.;Ono,T. https://doi.org/10.1007/BF02540996
  14. J Inorg Biochem v.22 Distribution and chromium-binding capacity of a low-molecular-weight, chromium-binding substance in mice Yamamoto,A.;Wada,O.;Ono,T. https://doi.org/10.1016/0162-0134(84)80018-5
  15. Free Radic Biol Med v.18 Oxidative mechanism in the toxicity of metal ions Stohs,S.J.;Bagchi,D. https://doi.org/10.1016/0891-5849(94)00159-H
  16. J Am Coll Toxicol v.8 Chromium (Ⅵ) toxicity : Uptake, reduction and DNA damage Standeven,A.M.;Wetterhahn,K.E. https://doi.org/10.3109/10915818909009118
  17. Sci Total Environ v.71 Uptake of $^51Cr$ (Ⅵ) by human erythrocytes: evidence for a carrier-mediated transport mechanism Ottenwalder,H.;Wiegand,H.J.;Bolt,H.M. https://doi.org/10.1016/0048-9697(88)90237-9
  18. Fed Proc v.39 Chromium (Ⅲ) trisacetylacetonate: an absorbable, bioactive source of chromium Anderson,M.;Riley,D.;Rotruck,J.
  19. Biochem Biophys Res Commun v.163 Evidence that chromium is an essential factor for biological activity of low molecular-weight chromium binding substance Yamamoto,A.;Wada,O.;Manabe,S. https://doi.org/10.1016/0006-291X(89)92119-0
  20. Biochemistry v.15 Chromium oligopeptide activates insulin receptor tyrosine kinase activity Davis,D.M.;Vincent,J.B.
  21. J Am Coll Nutr v.18 Mechanisms of chromium action: low-molecular-weight chromium-binding substance Vincent,J.B. https://doi.org/10.1080/07315724.1999.10718821
  22. Biochemistry v.35 A biologically active form chromium may activate a membrane phosphotyrosine phosphatase David,C.M.;Sumrall,K.H.;Vincent,J.B. https://doi.org/10.1021/bi960328y
  23. Biochemistry v.36 Chromiun oligopeptide activates insulin receptor tyrosine kinase activity David,C.M.;Vincent,J.B. https://doi.org/10.1021/bi963154t
  24. CRC Crit Revie Toxicol v.27 Toxicity and carcinogenicity of Cr(Ⅵ) in animal models and humans Costa,M. https://doi.org/10.3109/10408449709078442
  25. Carcinogenesis v.15 Reaction of Cr(Ⅵ) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: Role of Cr(Ⅳ)-mediated Fenton-like reaction Shi,X.;Mao,Y.;Knapton,A.D.;Ding,M.;Rojanasakul,Y.;Gannett,P.M.;Dalal,N.S.;Liu,K. https://doi.org/10.1093/carcin/15.11.2475
  26. Free Radical Biol Med v.10 Chemical determination of free radical-induced damage to DNA Dizadaroglu,M. https://doi.org/10.1016/0891-5849(91)90080-M
  27. Mutat Res v.214 Is lipid peroxidation associated with DNA damage? Brambilla,G.;Martelli,A.;marinari,U.M. https://doi.org/10.1016/0027-5107(89)90205-4
  28. Carcinogenesis v.16 Chromium (Ⅵ)-induced nuclear factor-κB activation in intact cells via free radical reactions Ye,J.Zhang,X.;Young,H.A.;Shi,X. https://doi.org/10.1093/carcin/16.10.2401
  29. Res Commun Mol Pathol Phamacol v.97 Comparative induction of oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinate Bagchi,D.;Bagchi,M.;Balmoori,J.;Ye,X.
  30. Chem Biol Interact v.75 Mechanisms of chromium toxicity in mitochondria Ryberg,D.;Alexander,J. https://doi.org/10.1016/0009-2797(90)90114-3
  31. Mutat Res v.238 Genotoxicity of chromium compounds De Flora,S.;Bagnasco,M.;Serra,D.;Zanacchi,P. https://doi.org/10.1016/0165-1110(90)90007-X
  32. Arch Toxicol v.51 Embryotoxicity of chromium:distribution in pregnant mice and effect on embryonnic cells in vitro Danielsson,B.R.;Dencker,L.;Khayat,A.;Orsen,I.
  33. Reprod Toxiod v.6 Analysis of protective activity on N-acetylcysteine against teratogenicity of heavy metals Endo,A.;Watanabe,T.
  34. Kiasato Arch Exp Med v.63 Uptake and distribution of chromium in isolated rat hepatocytes and its relation to cellular injury Ueno,S.;Susa,N.;Furukawa,Y.
  35. Biochem Biophys Res Commun v.210 Chromium (Ⅲ) induced abnormalities in human lymphocyte cell proliferation: evidence for apoptosis Rajaram,R.;Nair,B.U.;Ramasami,T. https://doi.org/10.1006/bbrc.1995.1679
  36. Food Cosmet Toxicol v.13 Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats Ivankovic,S.;Preussmann,R. https://doi.org/10.1016/S0015-6264(75)80298-7
  37. FASEB J v.9 Chromium (Ⅲ) picolinate produces chromosome damage in Chinese hamster ovarian cells Steams,D.M.;Wise,J.P.Sr;Patierno,S.R.;Wetterhahn,K.E.
  38. J Trace Elem Exp Med v.12 Chromium and parenteral nutrition Jeejeebhoy,K.N. https://doi.org/10.1002/(SICI)1520-670X(1999)12:2<85::AID-JTRA5>3.0.CO;2-Z
  39. J Nutr v.126 no.SUP. Safety limits for nutrients Hathcock,J.N.
  40. Regul Toxicol Pharmacol v.26 no.SUP. Chromium as an essential nutrient for humans Anderson,R.A. https://doi.org/10.1006/rtph.1997.1136
  41. Diabetes v.29 Beneficial effects of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects Offenbacher,E.G.;Pi Sunyer,F.X. https://doi.org/10.2337/diabetes.29.11.919
  42. Proc Alltech Annu Spymp 10th Stress effets on chromium nutrition of humans and animals. In Biotechnology in the Feed Industry Anderson,R.A.
  43. Diabetes v.46 Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes Anderson,R.A.;Cheng,N.Bryden,N.A.;Polansky,M.M.;Cheng,N. https://doi.org/10.2337/diabetes.46.11.1786
  44. J Dairy Sci v.79 Effects of supplemental chromium on production of cytokines by mitogon-stimulated bovine peripheral bood mononucleal cells Burton,J.L.;Nonnecke,B.J.;Dubeski,P.L.;Elasser,T.H.;Mallard,B.A. https://doi.org/10.3168/jds.S0022-0302(96)76600-6
  45. J Anim Sci v.75 Effect of shipping and chromium supplementation on performance response, and disease resistance in steers Kegley,E.B.;Spears,J.W.;Brown,T.T.Jr.
  46. Biol Trace Elem Res v.55 Can elevated chromium induce somatopsychic responses? Lovrincevic,I.Leung,F.Y.;Alfieri,M.A.H.;Grace,D.M. https://doi.org/10.1007/BF02784177
  47. J Nutr Med v.3 Somatopsychological effects of chromium supplementation Schrauzer,G.H.;Shrestha,K.P.;Arce,M.F. https://doi.org/10.3109/13590849208997960
  48. Ann Intern Med v.126 Chronic renal failure after ingestion of over-the-counter chromium picolinate [letter] Wasser,W.G.;Feldman,N.S.;D'Agati,V.D.
  49. Ann Phamacother v.32 Chromium picolinate toxicity Cerulli,J.;Grabe,D.W.;Gauthier,I.;Malone,M.;McGoldrick,M.D. https://doi.org/10.1345/aph.17327
  50. Am J Clin Nutr v.66 Vitamins and minerals: efficacy and safety Hathcock,J.N.

Cited by

  1. Antioxidant and Anti-Inflammatory Activities of Extracts from Eugenia caryophyllata Thunb. vol.31, pp.5, 2016, https://doi.org/10.7318/KJFC/2016.31.5.481
  2. Synergistic antiradical action of natural antioxidants and herbal mixture for preventing dioxin toxicity vol.21, pp.2, 2012, https://doi.org/10.1007/s10068-012-0062-9
  3. Biological Activities of Mesembryanthemum crystallinum (Ice plant) Extract vol.25, pp.6, 2015, https://doi.org/10.5352/JLS.2015.25.6.638
  4. The Effects of Syzygium aromaticum extract Spread on the Allergic Contact Dermatitis induced by DNCB vol.26, pp.4, 2013, https://doi.org/10.6114/jkood.2013.26.4.001
  5. The Antioxidant Effect of Portulaca oleracea Extracts and Its Antimicrobial Activity on Helicobacter pylori vol.24, pp.3, 2011, https://doi.org/10.9799/ksfan.2011.24.3.306
  6. Antioxidant and Anti-Inflammatory Activities of Eugenol and Its Derivatives from Clove (Eugenia caryophyllata Thunb.) vol.40, pp.10, 2011, https://doi.org/10.3746/jkfn.2011.40.10.1361
  7. Antioxidant activity and physiological properties of Moringa (Moringa oleifera Lam.) leaves extracts with different solvents vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.831
  8. Comparison of Antioxidant Activities of Radish Bud (Raphanus sativus L.) According to Extraction Solvents and Sprouting Period vol.42, pp.11, 2013, https://doi.org/10.3746/jkfn.2013.42.11.1767
  9. The Effects of Pharmacopuncture(Eugenia caryophyllata THUNB.) on the High Fat Diet-induced Obese ICR Mice vol.30, pp.3, 2013, https://doi.org/10.13045/acupunct.2013007
  10. Antioxidative Activity and Nitrite Scavenging Effect of the Composites Containing Medicinal Plant Extracts vol.17, pp.8, 2007, https://doi.org/10.5352/JLS.2007.17.8.1135
  11. Physiological activities of natural color powders and their mixtures vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.80
  12. Antioxidant and Antiobesity Activities of Various Color Resources Extracted from Natural Plants vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.165
  13. Effect of Drying and Extraction Methods on Antioxidant Activity of Gnaphalium affine D. DON vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.695
  14. 큰느타리버섯(Pieurotus eryngii) 조다당체 분획의 항산화 및 항종양활성 vol.33, pp.10, 2004, https://doi.org/10.3746/jkfn.2004.33.10.1589
  15. 건조 방법에 따른 와송의 항산화 효과 vol.37, pp.5, 2008, https://doi.org/10.3746/jkfn.2008.37.5.605
  16. 유지 기질에 대한 와송 추출물의 항산화 효과 vol.18, pp.8, 2004, https://doi.org/10.5352/jls.2008.18.8.1106
  17. 마카 추출액의 생리활성 효과 vol.38, pp.7, 2004, https://doi.org/10.3746/jkfn.2009.38.7.817
  18. 마카(Lepidium meyenii)의 부위별 함유성분 및 항산화 활성 비교 vol.23, pp.8, 2004, https://doi.org/10.20878/cshr.2017.23.8.013
  19. 용매별 정향 추출물의 항산화 및 신경세포 보호 효과 vol.32, pp.6, 2017, https://doi.org/10.7318/kjfc/2017.32.6.583
  20. 용매별 정향 추출물의 항산화 및 신경세포 보호 효과 vol.32, pp.6, 2017, https://doi.org/10.7318/kjfc/2017.32.6.583
  21. Effect of Polygonum multipolarum extract on the allergic reaction of NC/Nga mice causing atopic dermatitis vol.37, pp.1, 2020, https://doi.org/10.12925/jkocs.2020.37.1.66