DOI QR코드

DOI QR Code

Antibody 제작을 위한 human serine palmitoyltransferase 유전자의 발현

Expression of Human Serine Palmitoyltransferase Genes for Antibody Development

  • 발행 : 2004.04.01

초록

사람의 serine palmitoyltransferase(SPT, EC 2.3.1.50)에 대한 항체를 제작하기 위하여 E. coli발현 vector인 pRset vector에 SPTLC1 및 SPTLC2 유전자를 subcloning하고 BL21 (DE3)pLys cell에 발현시켰다. 포유동물의 SPT는 원핵세포의 SPT homodimer와는 달리 SPTLC1 및 SPTLC2 2개의 sub-unit로 된 heterodimer이다. Human embryo kidney cell인 HEK293 cell의 total RNA로부터 RT-PCR을 행하여 cDNA library를 얻은 다음 SPTLC1 및 SPTLC2의 특이적인 primer 들을 이용하여 PCR을 행하였다. SPTLC1 및 SPTLC2 DNA를 hexahistidine fusion 단백질을 발현시킬 수 있는 pRset vector에 cloning하여 pRsetB/SPTLC1 및 pRsetA/SPTLC2를 얻고 염기서열을 확인하였다. 재조합 plasmid를 발현세포인 BL21 cell에 형질전환시킨 다음 ampicillin 및 chroramphenicol 배지에서 선별하여 재조합세포를 얻었다. 1 mM IPTG로서 발현을 유도하였으며 세포 단백질을 SDS-PAGE로 분리한 다음 His-tag antibody로 western blotting을 행하여 SPTLC 및 SPTLC2가 발현되었음을 확인하였다.

For antibody development of human serine palmitoyltransferase (SPT, EC 2.3.1.50), SPTLC1 and SPTLC2 genes were subcloned in pRset vector and expressed in E. coli BL21 (DE3)pLys cells. Eucaryotic SPT is a membrane-bound heterodimer enzyme, while all other members are soluble homodimer enzymes. cDNA library were obtained from total RNA from human embryo kidney cell line, HEK293, using RT-PCR and PCR with specific primers was carried out for preparing SPTLC1 and SPTLC2 genes. pRset vector which can express hexahistidine-tag fusion protein was used and the DNA sequences of pRsetB/SPTLC1 and pRsetA/SPTLC2 were confirmed. Recombinant BL21 cells with SPTLC subunits were selected with LB plate containing ampicillin and chroramphenicol. SPTLC1 and SPTLC2 proteins were induced with 1 mM IPTG and seperated on 10% SDS-PAGE gel. Expressed proteins were confirmed by western blotting with His-tag antibody.

키워드

참고문헌

  1. Nat. Genet v.27 SPTLC1 is mutated in hereditary sensory neuropathy, type Ⅰ Bejaoui,K.;C.Wu;M.D.Scheffler;G.Hann;P.Ashby;L.Wu;P. de Jong;R.H.Brown,Jr. https://doi.org/10.1038/85817
  2. J. Clin. Invest. v.110 Hereditary sensory neuropathy type Ⅰ mutation confer dominant-negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis Bajaoui,K.;Y.Uchida;S.Yasuda;M.Ho;Nishijima,R.;H.Brown,Jr.;W.M.Holleran;K.Hanada https://doi.org/10.1172/JCI0216450
  3. Advances in Lipid Research, Sphingolipid and their metabolite v.25 Bell,R.M.;Y.A.Hannun;A.H.Merrill,Jr
  4. Proc. Natl. Acad. Sci. USA v.58 The biosynthesis of dihydrosphingosine in cell-free preparation of Hansenula ciferri Braun,P.E.;E.E.Snell https://doi.org/10.1073/pnas.58.1.298
  5. J. Biol. Chem. v.245 Synthesis of C18- and C20- dihydrosphingosines, ketodihydrosphingosines and ceramides by microsomal preparation from mouse brain Braun,P.E.;P.Morell;N.S.Radin
  6. Nat. Genet. v.27 Mutation in SPTLC1, encoding serine palmitoyltransferase, long chain base sub-unit-1, cause hereditary sensory neuropathy type Ⅰ Dawkins,J.L;D.J.Hulme;S.B.Brahmbhatt;M.Auergrumbach;G.A.Nicholson https://doi.org/10.1038/85879
  7. J. Biol. Chem. v.277 Mutations in the yeast LCB1 and LCB2 gene, including those corresponding to the hereditary sensory neuropathy type Ⅰ mutations, dominantly inactivate serine palmitoyltransferase Gable,K.;G.Han;E.Monaghan;D.Bacikova;M.Natarajan;R.Williams;T.M.Dunn https://doi.org/10.1074/jbc.M107873200
  8. J. Biol. Chem. v.275 Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity Gable,K.;D.Slife;D.Bacikova;E.Monaghan;T.M.Dunn https://doi.org/10.1074/jbc.275.11.7597
  9. Sphingolipid Biochemistry Chemistry of glycosphingolipids Hakomori,S.;J.N.Kanfer(ed.);S.Hakomori(ed.)
  10. J. Biol. Chem. v.265 Bifuntional role of glycosphingolipids : modulators for transmembrane signaling and mediators for cellular interactions Hakomori,S.
  11. Trends Cell Biol. v.10 Ceramide in the eukaryotic stress response Hannun,Y.A.;C.Luberto https://doi.org/10.1016/S0962-8924(99)01694-3
  12. Angew. Chem. Int. Ed. v.38 Sphingolipid - Their met-abolic pathway and the pathobiochemistry of neurode-generative disease Kolter,T.;K.Sandhoff https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U
  13. J. Biol. Chem. v.276 A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T Ikushiro,H.;H.Hayashi;H.Kagamiyama https://doi.org/10.1074/jbc.M101550200
  14. Lipids v.34 no.Suppl Sphingolipid metabolism in the regulation of bioactive molecules Luberto,C.;Y.A.Hannun https://doi.org/10.1007/BF02562221
  15. Biochem. J. v.335 Signal transduction of stress via ceramide Mathias,S.;LA.Pena;R.N.Kolesnick
  16. Toxicol. Appl. Pharmacol. v.142 Sphingolipids - the enigmatic lipid class : Biochemistry, physiology and pathophysiology Merrill,A.H.Jr.;E.M.Schmelz;D.L.Dilehay;S.Spiegel;J.A.Shayman;J.J.Schroeder;R.T.Riley;K.A.Voss;E.Wang https://doi.org/10.1006/taap.1996.8029
  17. J. Nutr. v.125 Role of dietary sphing-olipids and inhibitors of sphingolipid metabolism in cancer and other diseases Merrill,A.H.Jr.;E.M.Schmelz;E.W.Schroeder;D.L.Dillehay;R.T.Reley
  18. Proc. Natl. Acad. Sci. USA v.91 LCB2 gene of Saccharomyces and the related LC81 gene encode subunits of serine palmitoryltransferase, the initial enzyme in sphinglipid synthesis Nagiec,M.M.;J.A.Baltisberer;G.B.Wells;R.I.Lester;R.C.Dickson https://doi.org/10.1073/pnas.91.17.7899
  19. J. Invest. Dematol. v.117 Skin barrier structure and function : the single gel phase model Norlen,L. https://doi.org/10.1046/j.1523-1747.2001.01463.x
  20. J. Nutr. v.130 Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycophin-golipids in 1,2-dimethylhydrazine-treated CF1 mice Schmelz,E.M.;M.C.Sullard;D.L.Dillahay;A.H.Merrill,Jr.
  21. Hum. Mutat. v.6 Two new mutations in the acid sphingomylinase gene causing type a Niemann-pick disease: N389T and R441X Schuchman,E.H. https://doi.org/10.1002/humu.1380060412
  22. FASEB J v.10 Sphingolipid metabolism and cell growth regulation Spiegel,S.;A.H.Merrill,Jr.
  23. Eur. J. Biochem. v.249 Human and murine serine-palmitoyl-CoA transferase - cloning, expression and characterization of the key enzyme in sphingolipid synthesis Weiss,B.;W.Stoffel https://doi.org/10.1111/j.1432-1033.1997.00239.x
  24. J. Biol. Chem. v.278 Localization, topology and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells Yasuda,S.;M.Nishijima;K.Hanada https://doi.org/10.1074/jbc.M209602200