DOI QR코드

DOI QR Code

Microstructures of HAp and HAp-Ag Composite Coating Layer Prepared by RS Magnetron Sputtering

RE Magnetron Sputtering에 의해 제조된 HAp와 HAp-Ag복합코팅층의 미세조직

  • Lee, Hee-Jung (School of Advanced Materials Engineering, Kongju National University) ;
  • Oh, Ik-Hyun (School of Advanced Materials Engineering, Kongju National University) ;
  • Park, Sang-Shik (Department of Advanced Materials Engineering, Sangju National University) ;
  • Lee, Byong-Taek (School of Advanced Materials Engineering, Kongju National University)
  • Published : 2004.04.01

Abstract

Hydroxyapatite (HAp) and HAp-Ag composite layers were coated on ZrO$_2$and Si wafer substrates by RF magnetron sputtering technique. The thickness of coating layers was in the range of 0.7∼1.0$\mu\textrm{m}$ and its roughness was 3∼4nm. The heat treated HAp coating layers were composed with nano-sized crystallines. However, the HAp-Ag composite layers showed the mixed structure with crystalline and amorphous phases. The Ca/P ratio of the as-received HAp coating layer was 1.9, but, the value was decreased as the Ag content with increased. Also, the Vickers hardness of HAp coating layer decreased as the Ag content increase.

RF magnetron sputtering법에 의해 단상의 하이드록시아파타이트와 하이드록시아파타이트은 복합코팅층을 ZrO$_2$와 Si 웨이퍼 기판에 코팅하였다. 이들 코팅층들의 두께 0.7∼1.0$\mu\textrm{m}$ 범위였으며 또한 거칠기(roughness)는 3∼4nm였다. 열처리된 HAp 코팅층은 나노크기의 결정들로 구성되어 있었으며, 반면 Ag가 함유된 복합코팅층의 경우 결정질과 비결정질이 혼재되어 있었다. 열처리 전 HAp 코팅층의 Ca/P비는 1.9였고, Ag의 함량이 증가함에 따라 비는 감소하는 경향을 나타내었다. 또한 Ag 함량이 증가함에 따라 HAp코팅층의 미소 경도는 감소하였다.

Keywords

References

  1. Surf. and Coatings Tech. v.173 Microstructure and Mechanical Properties of Hydroxyapatite Thin Films Grown by RF Magnetron Sputtering V.Nelea;C.Morosanu;M.Iliescu;I.N.Mihailescu https://doi.org/10.1016/S0257-8972(03)00729-1
  2. Mater. Sci. and Eng. v.C20 Structure, Bonding State and In-Vtro Study of Ca-P-Ti Film Deposited on Ti6A14V by RF Magnetron Sputtering J.D.Long;S.Xu;J.W.Cai;N.Jiang;J.H.Lu;K.N.Ostrikov;C.H.Diong
  3. Biomaterials v.24 no.6 Fabrication of $HAp-ZrO_2(3Y)$ Nanocomposite by SPS W.Li;L.Gao https://doi.org/10.1016/S0142-9612(02)00428-3
  4. Aust. NZJ. Opthalmol. v.23 Hydroxyapatite Orbital Implants A.Mcnab https://doi.org/10.1111/j.1442-9071.1995.tb00139.x
  5. Surf. and Coatings Tech. v.160 Phase Composition of Sputtered Films from a Hydroyapatite Target K.Ozeki;T.Yuhta;Y.Fukui;H.Aoki https://doi.org/10.1016/S0257-8972(02)00363-8
  6. Biomaterials v.21 Electrodeposition of Hydroxyapatite Coatings in Basic Conditions M.Manso;C.Jimenez;C.Morant;P.Herrero;J.M.Martinez Duart https://doi.org/10.1016/S0142-9612(00)00061-2
  7. Mater. Sci. and Eng. v.C22 Various Ca/P Ratio of Thin Calcium Phosphate Films I.S.Lee;C.N.Whang;H.E.Kim;J.C.Park;J.H.Song;S.R.Kim
  8. J. of Solid State Chem v.172 Study of the Ca/P Atomic Ratio of the Amorphous Phase in Plasma-Sprayed Hydroxyapatite Coatings M.T.Carayon;J.L.Lacout https://doi.org/10.1016/S0022-4596(02)00085-3
  9. Mater. Lett. v.56 Sintering Effects on Mechanical Properties of Biologically Derived Dentine Hydroxyapatite G.Goller;F.N.Oktar https://doi.org/10.1016/S0167-577X(02)00430-5
  10. Biomaterials v.17 Influence of Annealing Temperature on RF Magnetron Sputtered Calcium Phosphate Coatings K.van Dijk;H.G.Schaeken;J.G.C.Wolke;J.A.Jansen https://doi.org/10.1016/0142-9612(96)89656-6
  11. Biomaterials v.24 Radio Frequency(RF) Suspension Plasma Sprayed Ultra-Fine Hydroxyapatite(HA)/Zirconia Composite Powders R.Kumar;P.Cheang;K.A.Khor https://doi.org/10.1016/S0142-9612(03)00066-8
  12. Thin Solid Films v.335 Antibacterial Effects of Ag-HAp Thin Films on Alumina Substrates Q.L.Feng;T.N.Kim;J.Wu;E.S.Park;J.O.Kim;D.Y.Lim;F.Z.Cui https://doi.org/10.1016/S0040-6090(98)00956-0
  13. Mater. Lett. v.24 Bioactive Delivery Systems for the Slow Release of Antibiotics: Incorporation of $Ag^+$ Ions into Micor-Porous Hydroxyapatite Coatings M.Shirkhanzadeh;M.Azadegan;G.Q.Liu https://doi.org/10.1016/0167-577X(95)00059-3
  14. Mater. Lett. v.57 Microwave Processing of Fundtionally Graded Bioactive Materials S.Katakam;D.S.R.Krishna;T.S.S.Kumar https://doi.org/10.1016/S0167-577X(02)01364-2
  15. Appl. Surf. Sci. v.69 Plused Laser Deposition and Processing of Biocompatible Hydroxylapatite Thin Films C.M.Cotell https://doi.org/10.1016/0169-4332(93)90495-W
  16. Surf. and Coatings Tech. v.76-77 Influence of Ar Pressure on R.F. Magnetron-Sputtered $Ca_5(PO_4)_3OH$ Layers K.Van Dijk;H.G.Schaeken;C.H.M.Maree;J.Verhoeven;J.C.G.Wolke;F.H.P.M.Habraken;J.A.Jansen https://doi.org/10.1016/0257-8972(95)02590-1
  17. Biomaterials v.19 Crystallization, Fluoridation and Some Properties of Apatite Thin Films Prepared through RF-Sputtering from $CaOP_2O_5$ Glasses K.Yamashita;M.Matsuda;T.Arashi;T.Umegaki https://doi.org/10.1016/S0142-9612(98)00030-1
  18. Biomaterials v.21 XPS, EDX, and FTIR Analysis of Pulsed Laser Deposited Calcium Phosphate BioCeramic Coatings: The Effects of various Process Parameters H.Zeng;W.R.Lacefield https://doi.org/10.1016/S0142-9612(99)00128-3