Abstract
In this paper, we implemented real-time speaker undependent speech recognizer that is robust in noise environment using DSP(Digital Signal Processor). Implemented system is composed of TMS320C32 that is floating-point DSP of Texas Instrument Inc. and CODEC for real-time speech input. Speech feature parameter of the speech recognizer used robust feature parameter in noise environment that is transformed feature space of MFCC(met frequency cepstral coefficient) using ICA(Independent Component Analysis) on behalf of MFCC. In recognition result in noise environment, we hew that recognition performance of ICA feature parameter is superior than that of MFCC.
본 논문에서는 범용 디지털 신호처리기를 이용한 잡음환경에 강인한 실시간 화자 독립 음성인식 시스템을 구현하였다. 구현된 시스템은 TI사의 범용 부동소수점 디지털 신호처리기인 TMS320C32를 이용하였고, 실시간 음성 입력을 위한 음성 CODEC과 외부 인터페이스를 확장하여 인식결과를 출력하도록 구성하였다. 실시간 음성 인식기에 사용한 음성특징 파라메터는 일반적으로 사용되어 지는 MFCC(Mel Frequency Cepstral Coefficient)대신 독립성분분석을 통해 MFCC의 특징 공간을 변화시킨 파라메터를 사용하여 외부잡음 환경에 강인한 특성을 지니도록 하였다. 두 가지 특징 파라메터에 대해 잡음 환경에서의 인식실험 결과, 독립성분 분석에 의한 특징 파라메터의 인식 성능이 MFCC보다 우수함을 확인 할 수 있었다.