Ionic Conductivities of the LiCF$_3$SO$_3$Complexes with Liquid Crystalline Aromatic Polyesters Having Oligo(oxyethylene) Pendants

  • Lee, Jun-Woo (Division of Chemistry and Molecular Engineering and Center for Electro- and Photo-Responsive Molecules, Korea University) ;
  • Joo, Sung-Hoon (Division of Chemistry and Molecular Engineering and Center for Electro- and Photo-Responsive Molecules, Korea University) ;
  • Jin, Jung-Il (Division of Chemistry and Molecular Engineering and Center for Electro- and Photo-Responsive Molecules, Korea University)
  • Published : 2004.04.01

Abstract

We have synthesized new aromatic polyesters (DiPEG-HQ and DiPEG-BP) by condensation polymerization of a terephthalic acid derivative bearing a pendant oligo(oxyethylene) (DP = 7, MW = 350), which has a methoxy terminal group, and two different aromatic diols, hydroquinone and 4,4'-biphenoI. The synthesized polymers were characterized by differential scanning calorimetry (DSC), polarizing microscopy, and X-ray diffractometry for their liquid crystallinity (LC), thermal transitions, and structural morphologies in mesophases. The morphology of the LC phases depends strongly on the length of the rigid backbone repeating unit. The DiPEG-BP polymer having a longer repeating unit exhibits both layered and nematic structures before isotropization, whereas the DiPEG-HQ polymer having a shorter repeating unit shows only the layered structure in the mesophase. We found that the layer spacing for DiPEG-HQ is larger than that for DiPEG-BP. Both polymers easily form complexes with LiCF$_3$SO$_3$; we studied this complex formation by FT-IR spectroscopy. The layer spacing of the polymer-electrolyte composites increases upon increasing the amount of the lithium salt. The polymer/salt electrolyte mixtures we investigated at molar ratios of EO:salt in the range of 5-20 exhibit electrical conductivity values at 40$^{\circ}C$ of 2.4${\times}$10$\^$5/ and 1.1${\times}$10$\^$-5/ S/cm for DiPEG-HQ/LiCF$_3$SO$_3$ and DiPEG-BP/LiCF$_3$SO$_3$, respectively. At 80 $^{\circ}C$, these values are higher: 4.6${\times}$10$\^$-3/ and 1.1${\times}$10$\^$-4/ S/cm, respectively. The activation energy of conductivity depends strongly on the salt concentration.

Keywords

References

  1. Eurp. Polym. J. v.36 M.Shilata;T.Kokayashi;R.Yosomiya;M.Seki
  2. J. Appl. Polym. Sci. v.71 L.Wang;B.Yang;X.L.Wang;X.Z.Tang https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1711::AID-APP18>3.0.CO;2-Y
  3. J. Power Sources v.43-44 T.Noda;S.Kato;Y.Yoshihisa;K.Takeuchi;K.Murata
  4. J. Electrochem. Soc. v.139 O.Bohnke;C.Rousselot;P.A.Gillet;C.Truche https://doi.org/10.1149/1.2069512
  5. J. Electrochem. Soc. v.141 M.Inaba;Z.Ogumi;Z.Takehara https://doi.org/10.1149/1.2059122
  6. Ann. Rev. Mater. Sci. v.16 M.Armand
  7. Ann. Rev. Phys. Chem. v.43 C.A.Angell https://doi.org/10.1146/annurev.pc.43.100192.003401
  8. Electrochemistry of Novel Materials M.Armand;J.Y.Sanchez;M.Gauthier;Y.choquette;J.Lipkowski(ed.);P.N.Ross(ed.)
  9. Polymer Electrolyte Reviews v.2 M.Gauthier;A.Belanger;B.Kapfer;G.Vassort;M.Armand;J.R.Mac Callum(ed.);C.A.Vincent(ed.)
  10. Electrochim. Acta. v.38 K.M.Abraham https://doi.org/10.1016/0013-4686(93)80054-4
  11. Br. Polym. v.7 P.V.Wright https://doi.org/10.1002/pi.4980070505
  12. Polym. Commun. v.27 P.G.Hall;G.R.Davies;J.E.McIntyre;I.M.Ward;D.J.Banister;K.M.F.Le Brocq
  13. Fast Ion Transport in Solids M.Armand;J.M.Chabagno;M.Duclot;P.Vashishta(ed.)
  14. Polym. J. v.17 M.Watanabe;K.Sanui;N.Ogata;F.Inoue;T.Kobayashi;Z.Ohtaki https://doi.org/10.1295/polymj.17.549
  15. Polymer v.28 J.R.M.Ailes;F.M.Gray;J.R.Mac Callum;C.A.Vincent
  16. J. Electrochem. Soc. v.139 M.Nekoomanesh;H.S.Nagae;C.Booth;J.R.Owen https://doi.org/10.1149/1.2069031
  17. J. Appl. Electrochem v.23 R.Borkowska;J.Laskowski;J.Plocharski;J.Przyluski;W.Wieczorek https://doi.org/10.1007/BF00266120
  18. Solid State Ionics v.110 E.Quartarone;P.Mustarelli;A.Magistris
  19. Chem. Mater. v.9 K.M.Abraham;Z.Jiang;B.Carroll https://doi.org/10.1021/cm970075a
  20. Polymer(Korea) v.27 Y.W.Park;D.S.Lee
  21. J. Phys. Chem. B. v.101 W.Wieczorek;J.R.Stevens https://doi.org/10.1021/jp962517w
  22. Polymer Electrolyte Reviews v.2 C.Booth;C.V.Nicolas;D.J.Wilson;J.R.Mac Callum(ed.);C.A.Vincent(ed.)
  23. J. Electrochem. Soc. v.145 M.Kono;E.Hayashi;M.Watanabe https://doi.org/10.1149/1.1838514
  24. J. Am. Chem. Soc. v.106 P.M.Blonsky;D.F.Shriver;P.Austin;H.R.Allcock https://doi.org/10.1021/ja00334a071
  25. J. Electrochem. Soc. v.136 R.A.Reed;T.T.Wooster;R.W.Murray;D.R.Vaniv;J.S.Tonge;D.F.Shriver https://doi.org/10.1149/1.2097474
  26. Polymer(Korea) v.27 Y.Heo;Y.Kang;K.Han;C.Lee
  27. Electrochim. Acta. v.37 I.M.Ward;J.E.McIntyre;G.R.Davies;S.A.Dobrowski;S.R.Mirrezaei;H.V. St. A. Hubbard https://doi.org/10.1016/0013-4686(92)80093-2
  28. Electrochim. Acta. v.43 H.V. St. A. Hubbard;S.A.Sills;G.R.Davis;J.E.McIntyre;I.M.Ward https://doi.org/10.1016/S0013-4686(97)10024-X
  29. Electrochim. Acta. v.43 F.B.Dias;S.V.Batty;A.Gupta;G.Ungar;J.P.Voss;P.V.Wright https://doi.org/10.1016/S0013-4686(97)10022-6
  30. Electrochem. Commun. v.3 M.K.Park;J.Kim;J.Y.Bae https://doi.org/10.1016/S1388-2481(00)00149-1
  31. Macromolecules v.30 U.Lauter;W.H.Meyer;G.Wenger https://doi.org/10.1021/ma961098y
  32. J. Nanosci. and Nanotech. v.3 J.W.lee;J.I.Jin https://doi.org/10.1166/jnn.2003.184
  33. Macromolecules v.34 R.Hooper;L.J.Lyons;M.K.Mapes;D.Schumcher;D.A.Moline;R.West https://doi.org/10.1021/ma0018446
  34. Macromolecules v.34 S.B.Lee;S.C.Song;Y.S.Sohn;J.I.Jin https://doi.org/10.1021/ma010648b
  35. Polymer v.39 H.R.Kricheldorf;D.F.Wulff
  36. Macromolecules v.29 J.Watanabe;N.Sekine;T.Nematsu;M.Sone;H.R.Kricheldorf https://doi.org/10.1021/ma960342i
  37. J. Phys. Chem. v.98 W.Haung;R.Frech;R.A.Wheeler https://doi.org/10.1021/j100052a018
  38. J. Phys. Chem. B. v.101 A.Ferry https://doi.org/10.1021/jp962739u
  39. J. Chem. Phys. v.108 A.Ferry;G.Oradd;P.Jacobsson https://doi.org/10.1063/1.476163
  40. Polymer v.43 M.Digar;S.L.Hung;H.L.Wang;T.C.Wen;A.Gopalan https://doi.org/10.1016/S0032-3861(01)00655-3
  41. Polymer v.42 H.W.Chen;F.C.chang https://doi.org/10.1016/S0032-3861(01)00520-1
  42. Polymer v.42 P.Jannasch https://doi.org/10.1016/S0032-3861(01)00373-1
  43. Solid State Ionics v.107 Y.T.Cheng;T.C.Wen https://doi.org/10.1016/S0167-2738(97)00531-6
  44. J. Electroanal. Chem. v.459 T.T.Cheng;T.C.Wen https://doi.org/10.1016/S0022-0728(98)00372-6
  45. J. Power Sources v.77 J.Y.Song;Y.Y.Wang;C.C.Wan https://doi.org/10.1016/S0378-7753(98)00193-1
  46. Polymer v.40 T.C.Wen;Y.J.Wang;T.T.Cheng;C.H.Yang https://doi.org/10.1016/S0032-3861(98)00625-9
  47. Macromolecules v.19 M.Watanabe;K.Sanui;N.Ogata https://doi.org/10.1021/ma00157a055
  48. Macromolecules v.28 J.D. van Heumen;J.R.Stevens https://doi.org/10.1021/ma00116a030
  49. Mater. Sci. Eng. v.B64 T.Sreekanth;M.J.Reddy;S.Subramanyam;U.V.Subba Rao
  50. Solid State Ionics v.156 P.P.Chu;M.J.Reddy;H.M.Kao https://doi.org/10.1016/S0167-2738(02)00582-9
  51. Mater. Sci. Eng. v.B64 T.Sreekanth;M.Jaipal Reddy;S.Subramanyam;U.V.Subba Rao
  52. Macromolecules v.32 T.J.Cleij;L.W.Jenneskens;M.Wubbenhorst;J. van Turnhout https://doi.org/10.1021/ma990997u
  53. Electrochimica Acta. v.47 J.L.Qiao;N.Yoshimoto;M.ishikawa;M.Morita https://doi.org/10.1016/S0013-4686(02)00280-3
  54. Electrochimica Acta. v.46 J.Castillo;I.Delgado;M.Chacon;R.A.Vargas https://doi.org/10.1016/S0013-4686(00)00772-6