The study to measure of the BTX concentration using ANN

인공신경망을 이용한 BTX 농도 측정에 관한 연구

  • 정영창 (호서대학교 전기정보통신공학부) ;
  • 김동진 (호서대학교 전기정보통신공학) ;
  • 홍철호 (호서대학교 전기정보통신공학) ;
  • 이장훈 (호서대학교 환경안전공학) ;
  • 권혁구 (호서대학교 환경안전공학부)
  • Published : 2004.03.01

Abstract

Air qualify monitoring if a primary activity for industrial and social environment. Especially, the VOCs(Volatile Organic Compounds) are very harmful for human and environment. Throughout this research. we designed sensor array with various kinds of gas sensor, and the recognition algorithm with ANN(Artificial Neural Network : BP), respectively. We have designed system to recognize various kinds and quantities of VOCs, such as benzene, tolylene, and xylene.

휘발성유기 화합물(Vo1ati1e Organic Compounds : VOCs)은 탄화수소 화합물을 총칭한다. 이는 오존 및 광화학 스모그의 원인물질일 뿐 아니라 인체에는 암을 유발시키는 유해 물질이다. 또한 대기 중 악취 물질로서 환경 및 건강에 영향을 초래하는 유해성 물질이다. 본 논문은 대기 중에 포함된 암을 유발시키는 유해성 물질인 BTX(Benzene, Toluene, Xylene)의 존재 유무와 농도 측정에 대해서 연구하였다. 다종의 가스센서를 어레이하여 BTX 가스를 측정하고 인공신경망(Artificial Neural Network : ANN)의 역전파(Back propagation : BP) 알고리즘으로 시뮬레이션과 실험을 통해 농도를 추론하였다. ANN모듈은 기준 데이터를 시뮬레이션을 통해 학습시키고, 가스를 주입하여 실험 할 때 학습된 델타 모델에 근거하여 추론을 할 수 있는 추론 알고리즘 모듈이다. 이 모듈은 기준데이터를 MATLAB 코드로 시뮬레이션을 하여 생성된 parameter를 가지고 수행했으며, 시뮬레이션 결과를 실험을 통해 비교 테스트하여 검증하였다.

Keywords