DOI QR코드

DOI QR Code

입자추적방법을 이용한 다중저장대모형 개발

Development of Multiple Transient Storage Model Using Particle Tracking Method

  • 정태성 (UC Davis 공과대학 토목환경공학과) ;
  • 서일원 (서울대학교 공과대학 토목공학과)
  • 발행 : 2004.04.01

초록

본류대를 따라 저장대가 주기적으로 존재하는 다중저장대모형을 개발하고 자연하천의 혼합거동을 해석하였다. 개발된 모형 및 하나의 저장대를 갖는 기존의 저장대모형을 비교하기 위하여 모형실험 결과를 이용하였다. 본 모형을 이용하여 구한 농도분포는 모형실험에서 수집된 시간에 따른 농도분포를 잘 재현하는 반면, 연속적인 저장대를 갖는 기존모형은 불연속적인 저장대 구조로 인해 발생하는 농도분포의 부차적인 융기부분을 정확히 재현하지 못하는 것으로 나타났다. 본 모형의 현장 적용성을 검토하기 위하여 새로운 모형을 미국 미네소타주에 위치한 Shingobee River에 적용하고 혼합거동을 해석한 결과 새로운 저장대 모형은 저장대가 존재하는 자연하천에서의 분산거동을 정확하게 모의하는 것으로 나타났다.

To evaluate behavior in representing solute transport in natural streams, the storage zone model of the axially periodic transient storage zones is developed. The periodic transient storage zone model and continuous storage zone model are verified using the parameters and the tracer concentration vs. time curves observed in laboratory channels. The periodic storage zone model best fit the measured concentration vs. time curves, while the continuous storage model fails to describe some fluctuations and the plateau region of the tail occurring in a discontinuous transient storage system. Dispersion data from Shingobee River, Minnesota, U. S. A. show that the concentration curves simulated by the proposed model fit the observed concentration curves well.

키워드

참고문헌

  1. 서일원, 정태성 (1999). '2차원 Random-Walk 모형을 이용한 자연하천의 횡확산 해석' 한국수자원학회논문집, 제32권 제1호, pp. 61-70
  2. 정태성, 서일원 (2000). '하천수질예측을 위한 저장대모형의 매개변수 결정'. 대한토목학회논문집, 대한토목학회, 제20권 제5-A호, pp. 653-665
  3. 정태성, 서일원 (2000). '하천수질예측을 위한 저장대모형의 매개변수 추정식 개발'. 대한토목학회논문집, 대한토목학회, 제20권 제5-B호, pp. 667-678
  4. Alonso, C. V. (1981). 'Stochastic models of suspended-sediment dispersion.' Journal of Hydraulic Devision, American Society of Civil Engineering, Vol. 107, No. HY6, pp. 733-757
  5. Alexander, R. B., Fernald, P. J. W. Jr., and Landers, D. H. (2001). 'Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates'. Water Resources Research, Vol. 37, No. 6, pp. 1681-1694 https://doi.org/10.1029/2000WR900338
  6. Beer, T., and Young, P. C. (1983). 'Longitudinal dispersion in natural streams'. Journal of Environmental Engineering, Vol. 109, No. 5, pp. 1049-1067 https://doi.org/10.1061/(ASCE)0733-9372(1983)109:5(1049)
  7. Beltaos, S., and Day, T. J. (1978). 'A field study of longitudinal dispersion. Canadian Journal of Civil Engineering', Vol. 5, No. 4, pp. 572-585 https://doi.org/10.1139/l78-062
  8. Bencala, K. E., and Walters, R. A. (1983). 'Simulation of solute transport in a mountain pool-riffle stream: A transient storage model'. Water Resources Research, Vol. 19, pp. 718-724 https://doi.org/10.1029/WR019i003p00718
  9. Bhowmik, N. G., and Demissie, M. (1982). 'Bed material sorting in pools and riffles'. Journal of Hydraulic Devision, American Society of Civil Engineering, Vol. 108, No. HY10, pp. 1227-1231
  10. Castro, N. M., and Homberger, G. H. (1991). 'Surface-subsurface water interactions in an alluviated mountain stream channel'. Water Resources Research, Vol. 27, pp. 1613-1621. https://doi.org/10.1029/91WR00764
  11. Chatwin, P. C. (1980). 'Presentation of longitudinal dispersion data. Proceedings of the Journal of the Hydraulics Division', American Society of Civil Engineering, Vol. 106, pp. 71-83
  12. Cheong, T. S., and Sen, I. W. (2002). 'Parameter estimation of the transient storage model by routing method for river mixing processes'. Water Resources Research, accepted https://doi.org/10.1029/2001WR000676
  13. Choi, J., Harvey, J. W. and Martha, H. C. (2000). 'Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams'. Water Resources Research, Vol. 36, No. 6, pp. 1511-1518 https://doi.org/10.1029/2000WR900051
  14. D'Angelo, D. J., Webster, J. R, Gregory, S. V. and Meyer, J. L. (1993). 'Transient storage in application and Cascade mountain streams as related to hydraulic characteristics'. Journal of North America Benthic Socity, Vol. 12, pp. 223-235 https://doi.org/10.2307/1467457
  15. Fernald, A. G., Wigington, P. J. J., and Landers, D. H. (2001). 'Transient storage and hyporheic flow along the Willamette River, Oregon: Field mea- surements and model estimates'. Water Resources Research, Vol. 37, No. 6, pp. 1681-1694 https://doi.org/10.1029/2000WR900338
  16. Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., and Brooks, N. H. (1979). Mixing Inland and Coastal Waters. Academic Press, New York, N.Y.
  17. Hart, D. R. (1995). 'Parameter estimation and stochastic interpolation of the transient storage model for solute transport in stream'. Water Resources Research, Vol. 31, No. 2, pp. 323-328 https://doi.org/10.1029/94WR02739
  18. Harvey, J. W. and Fuller, C. C. (1938). 'Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance'. Water Resources Research, Vol. 34, pp. 623-636 https://doi.org/10.1029/97WR03606
  19. Harvey, J. W., Wagner, B. J., and Bencala, K. E. (1996). 'Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange'. Water Resources Research, Vol. 32, pp. 2441-2451 https://doi.org/10.1029/96WR01268
  20. Hays, J. R. (1996). Mass transport mechanisms in open channel flow. Doctor of Philosophy in Civil Engineering. Vanderbilt University, Nashville, Tennessee
  21. Heemink, A. (1990). 'Stochastic modeling of dispersion in shallow water. Stochastic Hydrology and Hydraulics', Vol. 4, pp. 161-174 https://doi.org/10.1007/BF01543289
  22. Jackman, A. P., Walters, R. A., and Kennedy, V. C. (1984). 'Transport and concentration controls for Chloride, Strontium, Potassium and Lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California', U.S.A. 2. Mathematical modeling. Journal of Hydrology, Vol. 75, pp. 111-141 https://doi.org/10.1016/0022-1694(84)90047-7
  23. Keller, E. A. and Melhorn, W. N. (1978). 'Rhythmic spacing and origin of pools and riffles'. Geological Society of America Bulletin, Vol. 89, pp. 723-730 https://doi.org/10.1130/0016-7606(1978)89<723:RSAOOP>2.0.CO;2
  24. Kim, B. K., Jackman, A. P., and Triska, F. J. (1990). 'Modeling biotic uptake by periphyton and transient hyporheic storage of nitrate in a natural stream'. Water Resources Research, Vol. 28, pp. 2743-2752 https://doi.org/10.1029/92WR01229
  25. Leopold, L. B., Wolman, M. G., and Miller, J. P. (1964). Fluvial Process in Geomorphology, W. H. Freeman and Company, San Francisco
  26. Mulholland, P. J., Steinman, A. D., Marzolf, E. R., Hart, D. R., and Deangelis, D. L. (1994). 'Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams. Oecologia', Vol. 98, pp. 40-47 https://doi.org/10.1007/BF00326088
  27. Nordin, C. F., and Sabol, G. V. (1974). Empirical data on longitudinal dispersion. U.S. Geological Survey Water Resources Investigations 20-74, Washington, D. C.
  28. Nordin, C. F., and Troutman, B. M. (1980). 'Longitudinal dispersion in rivers: The persistence of skewness in observed data'. Water Resources Research, Vol. 16, No. 1, pp. 123-128 https://doi.org/10.1029/WR016i001p00123
  29. Pedersen, F. B. (1977). Prediction of longitudinal dispersion in natural streams. Hydrodynamics and Hydraulic Engineering Series Paper, No. 14, Technical University of Denmark
  30. Richards, K. S. (1976). 'Channel width and riffle-pool sequence'. Geological Society of America Bulletin, Vol. 87, pp. 883-890 https://doi.org/10.1130/0016-7606(1976)87<883:CWATRS>2.0.CO;2
  31. Runkel, R. L., and Chapra, S. C. (1993). 'An efficient numerical solution of the transient storage equations for solute transport in small streams'. Water Resources Research, Vol. 29, No. 1, pp. 211-215 https://doi.org/10.1029/92WR02217
  32. Seo, I. W., and Cheong, T. S. (2001). 'Moment-based calculation of parameters for the storage zone model for river dispersion'. Journal of Hydraulic Engineering, Vol. 127, No. 6, pp. 453-465 https://doi.org/10.1061/(ASCE)0733-9429(2001)127:6(453)
  33. Seo, I. W., and Maxwell, W. H. C. (1992). 'Modeling low-flow mixing through pools and riffles'. Journal of Hydraulic Engineering, Vol. 118, No. 10, pp. 1406-1423 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1406)
  34. Singh, K. P., and Broeren, S. M. (1985). 'Basinwide instream flow assessment model to evaluate in-stream flow needs.' Water Resources Center Research Report 197, University of Illinois, Urbana-Champaign, Urbana, Illinois
  35. Stall, J. B. and Yang, C. T. (1972). Hydraulic geometry and low streamflow regimen. Water Resources Research Reports 54, University of Illinois, Urbana, Illinois
  36. Thackston, E. L., and Schnelle, J. Karl B. (1970). 'Predicting effects of dead zones on stream mixing. Proceedings of the Journal of the Sanitary Engineering Division', American Society of Civil Engineering, Vol. 96, pp. 319-331
  37. Trisca, F. J., Duff, J. H., Avanzino, R. J. (1993). 'The role of water exchange between stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface'. Hydrobiologia, vol. 251, pp. 167-184 https://doi.org/10.1007/BF00007177
  38. Valentine, E. M., and Wood, I. R. (1979). 'Dispersion in rough rectangular channels'. Proceedings of the Journal of the Hydraulics Division, American Society of Civil Engineering, Vol. 105, No. HY12, pp. 1537-1553
  39. Wroblicky, G. J., Campana, M. E., and Dahm, C. N. (1998). 'Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems https://doi.org/10.1029/97WR03385
  40. Hydrobiologia v.251 The role of water exchange between stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface Trisca,F.J.;Duff,J.H.;Avanzino,R.J. https://doi.org/10.1007/BF00007177
  41. Proceedings of the Journal of the Hydraulics Division, American Society of Civil Engineering v.105 no.HY12 Dispersion in rough rectangular channels Valentine,F.M.;Wood,I.R.
  42. Water Resources Research v.34 no.3 Seasonal variation in surface-subsurface water exchange ad lateral hyporheic. area of two stream-aquifer systems Wroblicky,G.J.;Campana,M.E.;Dahm,C.N. https://doi.org/10.1029/97WR03285