FBG Sensor Signal Processing System using SLD Tunable Light Source and Etalon Filter

SLD동조 광원과 에탈론 필터를 이용한 FBG 센서 신호처리 시스템

  • Chung, Chul (Department of Information-communication Engineering, Hoseo University) ;
  • Lee, Ho-Joon (Department of Information-communication Engineering, Hoseo University) ;
  • Kim, Ki-Soo (Graduate School of Venture, Hoseo University)
  • 정철 (호서대학교 정보통신공학부) ;
  • 이호준 (호서대학교 정보통신공학부) ;
  • 김기수 (호서대학교 벤처대학원 첨단산업기술학과)
  • Published : 2004.05.01

Abstract

Fiber Bragg grating sensors are fabricated by core index modulation using UV laser and phasemask. Bragg wavelength of the grating is changed by the external strain. In this paper, a signal processing system of fiber Bragg grating sensor has studied in the optical wavelength domain. The system is based on the sweep semiconductor light source that consists of SLD, F-P tunable filter and etalon filter. The hysteresis effects of PZT in the F-P tunable filter are compensated. The long term measurement stability is obtained by controlling the temperature of F-P tunable filter and the SLD. We compare the strain data from fiber Bragg grating sensor and that from strain gauge at concrete hume pipe. We also get very good results for the long gauge displacement using fiber Bragg grating sensor which are identical to the data with short gauge length ordinary displacement sensor.

광섬유 브래그 격자 센서는 광섬유의 코어의 굴절률 변조에 의해서 제작되며, 이 센서는 외부의 스트레인에 따라 브래그 파장이 변화하게 된다. 본 논문에서는 광섬유 브래그 격자 센서를 파장 영역에서 신호처리 할 수 있는 방법에 대하여 연구하였다. SLD와 F-P 필터로 구성된 sweep 반도체 광원과 F P 필터내의 PZT의 히스테리시스 특성을 보상하기 위한 에탈론 필터와 장기 계측을 위해 절대 파장 기준으로 온도 안정된 광섬유 브래그 격자를 사용하였다. 콘크리트 흄관에서 FBG 센서의 스트레인 응답 특성을 전기저항 센서와 비교하였다. 그리고 광섬유 격자 센서를 이용하여 장거리 변위의 측정 가능성을 확인하였다.

Keywords

References

  1. R. M. Measures, 'Fiber optic sensor considerations and developments for smart structures' Proc. SPIE, vol. 1588, pp. 282, 1991 https://doi.org/10.1117/12.50189
  2. G. Meltz, W. W. Morey, and W. H. Glenn, 'Formation of Bragg grating in optical fibers by a transverse holographic method,' Optics Letters, vol. 14, pp. 823-825, 1989 https://doi.org/10.1364/OL.14.000823
  3. Othonos, A., X. Lee and D. P. Tsai, 'Spectrally broadband Bragg grating mirror for and erbium-doped fiber laser,' Optical Engineering, vol. 35, pp. 1088-1092, 1996 https://doi.org/10.1117/1.600725
  4. Bilodeau., F., et al. 'High Return Loss narrowband all fiber bandpass Bragg transmission filter,' IEEE Photonics Technol. Lett., vol. 6, pp80, 1994 https://doi.org/10.1109/68.265896
  5. Kersey, A. D., et al. 'Fiber grating sensors,' IEEE Journal of Lightwave Technol., vol. 15, pp. 1442-1463, 1997 https://doi.org/10.1109/50.618377
  6. Kersey, A. D.,T. A. Berkoff, and W. W. Morey, 'Muliplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength filter,' Optics Lett., vol. 18, pp. 1370-1372, 1993 https://doi.org/10.1364/OL.18.001370
  7. Jackson, D. A., et al. 'Simple multiplexing scheme for fiber optic grating sensor network,' Optics Lett., vol. 18, pp. 1192-1194, 1993 https://doi.org/10.1364/OL.18.001192
  8. Melle, S. M., K. Liu, and R. M. Measures, 'A passive wavelength demodulation system for guided-wave Bragg grating sensor.' IEEE Photonics Technol. Lett., vol. 4, pp. 516-518, 1992 https://doi.org/10.1109/68.136506
  9. Zhang, L., et al. 'Identical broadband chirped grating interrogation technique for temperature and strain sensing,' Proceeding of the Optical Fiber Sensors conference(OFS-12), Williamsburg, VA, USA, pp. 309-311, 1995
  10. Kersey, A. D., and W. W. Morey, 'Multiplexed Bragg grating fibre laser strain sensor,' Electron. Lett., vol. 29, pp. 964-966. 1993 https://doi.org/10.1049/el:19930642
  11. Meltz, G., and W. W. Morey, 'Bragg grating formation and germanosilicate fiber photosensitivity,' International workshop of Photoinduced Self Organization Effects in Optical Fiber, Quebec City, Quebec, May 10-11, Proceedings SPIE, vol. 1516, pp. 185-199, 1991 https://doi.org/10.1117/12.51164