DOI QR코드

DOI QR Code

고전적층이론을 이용한 섬유금속적층판의 열 . 거동 연구

Study on the Thermo-Mechanical Behaviors of Fiber Metal Laminates Using the Classical Lamination Theory

  • 최흥섭 (대한항공, 한국항공기술연구원) ;
  • 노희석 (대한항공, 한국항공기술연구원) ;
  • 강길호 (한국항공대학교 항공재료공학과 대학원) ;
  • 하민수 (경기공업대학, 정밀계측과)
  • 발행 : 2004.04.01

초록

In this study the mechanical behaviors of fiber metal laminates(FMLs) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also, carpet plots of effective elastic moduli, Poisson's ratio and the thermal expansion coefficient for GLARE FML are plotted.

키워드

참고문헌

  1. Staley, J. T. and Hunt, W. H. Jr., 1998, 'Needs of the Aircraft Industry for Aluminum Products,' 12th Annual NCMS Technical Conference, May 4-6, 1998, Orlando, Florida, USA
  2. MIL-HDBK-17-2E,Polymer Matrix Composites, Vol.2: Materials Properties
  3. MIL-HDBK-5H, Metallic Materials and Elements for Aerospace Vehicle Structures
  4. Vlot, A. and Gunnink, J. W., 2001, Fiber Metal Laminates An Introduction, Kluwer Academic Publishers
  5. Vogelesang, L. B. and Vlot, A., 2000, 'Development of Fibre Metal Laminates for Advanced Aerospace Materials ,' Journal of Materials Precessing Technology, Vol. 103, pp. 1-5 https://doi.org/10.1016/S0924-0136(00)00411-8
  6. Remmers, J. J. C. and de Borst, R., 2001, 'Delamination Buckling of Fiber-Metal Laminates,' Composite Science and Technology, Vol. 61, pp. 2207-2213 https://doi.org/10.1016/S0266-3538(01)00114-2
  7. Wittenberg,T. C., van Baten, T. J. and de Boer, A., 2001, 'Design of Fiber Metal Laminate Shear Panels for Ultra-High Capacity Aircraft,' Aircratf Design, Vol. 4, pp. 99-113 https://doi.org/10.1016/S1369-8869(01)00003-9
  8. Yeh, J. R., 1994, 'Fatigue crack growth in Fiber-Metal Laminates,' Int. J. of Solids Structures, Vol. 32, No. 14, pp. 2063-2075 https://doi.org/10.1016/0020-7683(94)00221-H
  9. Vinson, J. R. and Chou, T. W., 1975, Composite Materials and Their Use in Structures, John & Sons
  10. Asundi, A, Choi, A. Y. N., 1997, 'Fiber Metal Laminates: An Advanced Material for Future Aircraft,' Journal of Materials Processing Technology, Vol. 63, pp. 384-394 https://doi.org/10.1016/S0924-0136(96)02652-0
  11. Aerospace Structures and Materials Status, Status Report 2002, National Aerospace Technology, NLR
  12. Aluminum-Fiberglass Laminate Material, 2002, Boeing Material Specification, BMS 7-326H
  13. Daniel, I.M. and Ishai. O., 1994, 'Engineering Mechanics of Composite Materials, Oxfore University Press
  14. European Space Agency, Structural Material Handbook
  15. Choi, H. S., Ahn, K. J., Nam, J. D. and Chun, H. J., 2000, 'Hygroscopic Aspects of Eposy/Carbon Fiber Composite Laminates in Aircraft Environments,' Composites Part A: Applied Science and Manufacturing, Vol. 32, pp. 709-720 https://doi.org/10.1016/S1359-835X(00)00145-7

피인용 문헌

  1. Analytical Study for the Prediction of Mechanical Properties of a Fiber Metal Laminate Considering Residual Stress vol.23, pp.5, 2014, https://doi.org/10.5228/KSTP.2014.23.5.289
  2. Prediction and Verification of Lateral Joining Strength for Tapered-Hole Clinching using the Taguchi Method vol.25, pp.1, 2016, https://doi.org/10.5228/KSTP.25.1.36