Numerical Simulation of Natural Convection in Annuli with Internal Fins

  • Ha, Man-Yeong (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Joo-Goo (School of Mechanical Engineering, Pusan National University)
  • Published : 2004.04.01

Abstract

The solution for the natural convection in internally finned horizontal annuli is obtained by using a numerical simulation of time-dependent and two-dimensional governing equations. The fins existing in annuli influence the flow pattern, temperature distribution and heat transfer rate. The variations of the On configuration suppress or accelerate the free convective effects compared to those of the smooth tubes. The effects of fin configuration, number of fins and ratio of annulus gap width to the inner cylinder radius on the fluid flow and heat transfer in annuli are demonstrated by the distribution of the velocity vector, isotherms and streamlines. The governing equations are solved efficiently by using a parallel implementation. The technique is adopted for reduction of the computation cost. The parallelization is performed with the domain decomposition technique and message passing between sub-domains on the basis of the MPI library. The results from parallel computation reveal in consistency with those of the sequential program. Moreover, the speed-up ratio shows linearity with the number of processor.

Keywords

References

  1. Chai, J. C. and Patankar, S. V., 1993, 'Laminar Natural Convection in Internally Finned Horizontal Annuli,' Numerical Heat Transfer, Part A, Vol. 24, pp. 67-87 https://doi.org/10.1080/10407789308902603
  2. Desrayaud, G., Lauriat, G. and Cadiou, P., 2000, 'Thermoconvective Instabilities in Narrow Horizontal Air-filled Annulus,' Int. J. Heat Fluid Flow, Vol. 21, pp. 65-73 https://doi.org/10.1016/S0142-727X(99)00048-X
  3. Farinas, M., Garon, A. and Saint-Louis, K., 1997, 'Study of Heat Transfer in a Horizontal Cylinder with Fins,' Rev Cen Therm, Vol. 36, pp. 398-410 https://doi.org/10.1016/S0035-3159(97)81601-7
  4. Glakpe, E. K., Watkins, Jr., C. B. and Cannon, J. N., 1986, 'Constant Heat Flux Solutions for Natural Convection between Concentric and Eccentric Horizontal Cylinders,' Numer. Heat Transfer, Vol. 10, pp. 279-295 https://doi.org/10.1080/10407788608913520
  5. Glakpe, E. K. and Watkins, Jr.,C. B., 1987, 'Effect of Mixed Boundary Conditions on Natural Convection in Concentric and Eccentric Annular Enclosure,' AIAA Paper, pp. 1587-1591
  6. Hessami, M. A., Pollard, A. and Rowe, R. D., 1984, 'Numerical Calculations of Natural Convection Heat Transfer between Horizontal Concentric Isothermal Cylinders - Effects of Variation of Fluid Properties,' J. Heat Transfer, Vol. 106, pp. 668-671 https://doi.org/10.1115/1.3246736
  7. Ho, C. J., Lin, Y. H. and Chen, T. C., 1989, 'A Numerical Study of Natural Convection in Concentric and Eccentric Horizontal Cylindrical annuli with Mixed Boundary Conditions,' Int. J. Heat Fluid Flow, Vol. 10, pp. 40-47 https://doi.org/10.1016/0142-727X(89)90053-2
  8. Kuehn, T. H. and Goldstein, R. J., 1970, 'A Parametric Study of Prandtl Number and Diameter Ratio Effects on Natural Convection Heat Transfer in Horizontal Cylindrical Annulus,' J. Heat Transfer, Vol. 102, pp. 768-770 https://doi.org/10.1115/1.3244388
  9. Kuehn, T. H. and Goldstein, R. J., 1976, 'An Experimental and Theoretical Study of Natural Convection in the Annulus between Horizontal Concentric Cylinders,' J. Fluid Mech., Vol. 74, pp. 695-719 https://doi.org/10.1017/S0022112076002012
  10. Kuehn, T. H. and Goldstein, R. J., 1978, 'An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli,' J. Heat Treansfer, Vol. 100, pp. 635-640 https://doi.org/10.1115/1.3450869
  11. Kumar, R., 1987, 'Numerical Study of Natural Convection in a Horizontal Annulus with Constant Heat Flux on the Inner Wall,' Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conference, Vol. 2, pp. 187-193
  12. Mirza, S. and Soliman, H. M., 1985, 'The Influence of Internal Fins on Mixed Convection inside Horizontal Tubes,' Int. Commun. Heat Mass Transfer, Vol. 12, pp. 191-200 https://doi.org/10.1016/0735-1933(85)90067-3
  13. Parker, S. J., 2002, 'Stability and Vortex Shedding of Bluff Body Arrays,' PhD Thesis, Unversity of Illinois, Urbana, IL
  14. Patankar, S. V., Ivanovic, M. and Sparrow, E. M., 1979, 'Analysis of Turbulent Flow and Heat Transfer in Internally Finned Tubes and Annuli,' J. Heat Transfer, Vol. 101, pp. 29-37 https://doi.org/10.1115/1.3450925
  15. Rustum, I. M. and Soliman, H. M., 1990, 'Numerical Analysis of Laminar Mixed Convection in Horizontal Internally Finned Tubes,' Int. J. Heat Mass Transfer, Vol. 33, pp. 1485-1496 https://doi.org/10.1016/0017-9310(90)90045-V
  16. Sui, Y. T. and Tremblay, B., 1984, 'On transient Natural Convection Heat Transfer in the Annulus between Concentric Horizontal Cylinders with Isothermal Surfaces,' Int. J. Heat Mass Transfer, Vol. 27, pp. 103-111 https://doi.org/10.1016/0017-9310(84)90242-4
  17. Van de Sande, E. and Hamer, B. J. G., 1979, 'Steady and Transient Natural Convection in Enclosures between Circular Cylinders (Constant Heat Flux),' Int. J. Heat Mass Transfer, Vol. 22, pp. 361-370 https://doi.org/10.1016/0017-9310(79)90002-4
  18. Yang, H. Q., Yang, K. T. and Lloyd, J. R., 1988, 'Natural Convection Suppression in Horizontal Annuli by Azimuthal Baffles,' Int. J. Heat Mass Transfer, Vol. 31, pp. 2123-2136 https://doi.org/10.1016/0017-9310(88)90122-6
  19. Yoo, J., 1996, 'Dual Steady Solutions in Natural Convection Between Horizontal Concentric Cylinders,' Int. J. Heat Fluid Flow, Vol. 17, pp. 587-593 https://doi.org/10.1016/S0142-727X(96)00064-1