진화 시스템을 위한 유전자 알고리즘 프로세서의 구현

Implementation of an Adaptive Genetic Algorithm Processor for Evolvable Hardware

  • 발행 : 2004.04.01

초록

Genetic Algorithm(GA), that is shown stable performance to find an optimal solution, has been used as a method of solving large-scaled optimization problems with complex constraints in various applications. Since it takes so much time to execute a long computation process for iterative evolution and adaptation. In this paper, a hardware-based adaptive GA was proposed to reduce the serious computation time of the evolutionary process and to improve the accuracy of convergence to optimal solution. The proposed GA, based on steady-state model among continuos generation model, performs an adaptive mutation process with consideration of the evolution flow and the population diversity. The drawback of the GA, premature convergence, was solved by the proposed adaptation. The Performance improvement of convergence accuracy for some kinds of problem and condition reached to 5-100% with equivalent convergence speed to high-speed algorithm. The proposed adaptive GAP(Genetic Algorithm Processor) was implemented on FPGA device Xilinx XCV2000E of EHW board for face recognition.

키워드

참고문헌

  1. 장병탁, '인공 생명과 진화 알고리즘' , 전자공학회지, 제24권 제3호, pp. 51-60., 1997년 3월
  2. D. E. Goldberg, Genetic Algorithm in search, Optimization, and Machine Learning, Addison-Wesley, 1989
  3. J. H. Holland, 'Adaptation in Natural and Artificial Systems', Univ. of Michigan Press, Ann Arbor, 1975
  4. L. J. Fogel, A. J. Owens, M. J. Walsh, 'Artificial Intelligence through Simulated Evaluation', New York: John Wiley & Sons, 1966
  5. Barry Shackleford, Etsuko Okushi et al., 'A High-performance Hardware Implementation of a Survival-based Genetic Algorithm', ICONIP'97, pp 686-691, Nov, 1997
  6. J. J. KIM, 'Implementation of a High-Performance Genetic Algorithm Processor for Hardware Optimization', IEICE TRANSACTIOMS on Electronics, Vol.E85-C, No.1, pp. 195-203, January 2002
  7. K. Dejong, ' An analysis of behavior of a class of genetic adaptive system, Ph.D. Thesis, University of Michigan, 1975
  8. J. H. Holland, 'Concerning Efficient Adaptive System', 1962
  9. S. D. Scott, A. Samal, S. Seth, 'HGA :A hardware-based genetic algorithm', Proc. ACM/SIMDA 3rd International Symposium on FPGA, pp. 53-59., 1995 https://doi.org/10.1145/201310.201319
  10. P. Graham, B. Nelson, 'A hardware genetic algorithm for the traveling salesman problem on Splash2' 5th International Workshop on Field-Programmable Logic and its Applications, pp. 352-361., August. 1995
  11. M. Salami, 'Multiple genetic algorithm processor for hardware optimization', Proc. First International Conference, ICES96 Evolvable System: From Biology to Hardware, pp. 249-259., October 1996
  12. M. Tommiska, J. Vuori, 'Implementation of genetic algorithms with programmable logic devices', Proceeding of the 2NWGA, August 1996
  13. I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Yamauchi, T. Inuo, N. Kajihara, M. Iwata, D. Keymeulen, T. Higuchi, 'A gate-level EHW chip: Implementing GA operations and reconfigurable hardware on a single LSI', Evolvable Systems: From Biology to Hardware, Lecture Notes in Computer Science 1478, pp. 1-12., Springer Verlag, 1998 https://doi.org/10.1007/BFb0057602
  14. N. Yoshida, T. Moriki and T. Yasuoka, 'GAP: Genetic VLSI processor for genetic algorithm', Second International ICSC Symp. on Soft Computing, pp.341-345., 1997
  15. Shin'ichi Wakabayashi et al., 'GAA: A VLSI genetic algorithm accelerator with on-the-fly adaptation of crossover operators', ISCAS 98, 1998 https://doi.org/10.1109/ISCAS.1998.706894
  16. K. Dejong, ' An analysis of behavior of a class of genetic adaptive system', Ph.D. Thesis, University of Michigan, 1975
  17. J. J. Grefenstette, 'Optimization of control parameters for genetic algorithms,' IEEE Trans. Systems, Man. Cybern., vol. 16, no. 1, pp. 122 - 128, 1986 https://doi.org/10.1109/TSMC.1986.289288
  18. J. Schaffer, R. Caruana, L. Eshelman, R. Das, 'A study of control parameters affecting online performance of genetic algorithms for function optimization,' in Proc. 3rd Int. Conf. Genetic Algorithms, J. D. Schaffer, Ed., San Mateo, CA: Morgan Kaufmann, 1989, pp. 51 - 60
  19. J. Hesser and R. Manner, 'Toward an optimal mutation probability for genetic algorithms,' in Proc. 1st Conf. Parallel Problem Solving from Nature,(Lecture Notes in Computer Science, vol. 496), H.-P. Schwefel and R. Manner, Eds. Berlin, Germany: Springer-Verlag, 1991, pp. 23 - 32
  20. T. Fogarty, 'Varying the probability of mutation in the genetic algorithm,' in Proc. 3rd Int. Conf. Genetic Algorithms, J. D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann, 1989
  21. T. Back and M. Schutz, 'Intelligent mutation rate control in canonical genetic algorithms,' in Foundations of Intelligent Systems (Lecture Notes in Artificial Intelligence, 1079), Z. Ras and M. Michalewicz, Eds. New York: Springer-Verlag, 1996, pp. 158 - 167
  22. R. Hinterding, Z. Michalewicz, A. E. Eiben, Adaptation in Evolutionary Computation: A Survey. In Proceedings of the 4th IEEE International Confernce in Evolution Computation. IEEE Press, pp.65-69, 1997 https://doi.org/10.1109/ICEC.1997.592270
  23. Srinivas M. and Parnaik L. M., 'Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms' IEEE Transactions on Systems, Man and Cybernetics, Vol. 24, No. 4, pp. 656-667, April, 1994 https://doi.org/10.1109/21.286385
  24. J. E. Smith, 'Operator and parameter adaptation in Genetic Algorithm', Soft computing, pp. 81-87, 1997 https://doi.org/10.1007/s005000050009
  25. A. E. Eiben, R. Hinterding, and Z. Michalewicz. 'Parameter control in evolutionary algorithms', IEEE Transaction on Evolutionary Computation, Vol. 3, No. 2, pp.124-141, July, 1999 https://doi.org/10.1109/4235.771166
  26. E. K. P. Chong and S. H. Zak, 'An Introduction to Optimization', John Wiley & Sons, Inc., N.Y., 1996
  27. J. Matyas, 'Random Optimization', Automation and Remote Control, Vol. 26, pp. 246-253, 1965
  28. L. Bolc and J. Cytowski, 'Search Methods for Artificial Intelligence', Academic Press, London, 1992
  29. Z. Michalewicz, 'Genetic Algorithms + Data Structures = Evolution Programs', Springer-Verlage, berlin Heidelberg, 1996
  30. Daniel Zwillinger, 'Standard Mathematical Tables and Formulae' (31st ed.), Chapman & Hall/CRC Press, 2003
  31. H. Muhlenbein, D. Schomisch and J. Born. 'The Parallel Genetic Algorithm as Function Optimizer ', Parallel Computing, 17, pages 619-632, 1991 https://doi.org/10.1016/S0167-8191(05)80052-3
  32. J. E. Beasley and P. C. Chu, 'A genetic algorithm for the set covering problem', EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, pp. 392-404, Vol. 94 No. 2, October 1996 https://doi.org/10.1016/0377-2217(95)00159-X
  33. Peter D. hortensius et al., 'Parallel Random Number Generation for VLSI System Using Cellular Automata', IEEE Trans. on Computer, Vol.38, No. 10, pp. 1466-1473, October 1989 https://doi.org/10.1109/12.35843