Copper(II) Sorption Mechanism on Kaolinite : An EPR and EXAFS Study

캐올리나이트 표면에서의 구리 수착 메카니즘 : 전자상자성공명 및 EXAFS 연구

  • Sung Pil Hyun (Environmental and Water Resources Engineering Program, Department of Civil and Environmental Engineering, University of Michigan) ;
  • Kim F Hayes (Environmental and Water Resources Engineering Program, Department of Civil and Environmental Engineering, University of Michigan)
  • Published : 2004.03.01

Abstract

Copper(II) sorbed on kaolinite (KGa-lb) was studied using electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The sorbed copper(II) had an isotropic EPR signal with $g_{iso}\;=\;2.19$ at room temperature. At 77 K, the isotropic signal converted to an axially symmetric anisotropic signal with $g_{\$\mid$}\;=\;2.40,\;g_{\bot}\;=\;2.08,\;and\;A_{\$\mid$}\;=\;131\;G$. These EPR results suggest that the sorbed copper(II) forms an outer-sphere surface complex with a tetragonally distorted $CuO_{6}$ octahedral structure on the kaolinite. In the sorption measurement, the amount of sorbed copper increased with increasing pH of the solution. However, the intensity of the isotropic EPR line was not directly proportional to the amount of sorbed copper. This discrepancy was resolved by assuming the formation of a surface precipitate at higher pH that is invisible by EPR. The EXAFS data confirmed the existence of the surface precipitate. The best fit for the EXAFS of the sorbed copper showed that each copper on the kaolinite had 6.8 copper neighbors located $3.08\;{\AA}$ from it, in addition to the first shell oxygen neighbors, including 4 equatorial O at $1.96\;{\AA}$ and 2 axial O at $2.31\;{\AA}$. This work shows that the local environment of the copper sorbed on the kaolinite changes as a function of pH and surface loading, and that the EPR and EXAFS are useful in studying such changes.

캐올리나이트(KGa-lb) 표면에 수착된 구리를 전자상자성공명(electron paramagnetic resonance) 과 EXAFS (extended X-ray absorption fine structure) 분광법을 이용하여 연구하였다. 수착된 구리는 상온에서 $g_{iso}\;=\;2.19$의 등방성 전자상자성공명 흡수 신호를 보여 준다. 77 K에서 이러한 등방성 신호는 $g_{\$\mid$}\;=\;2.40,\;g_{\bot}\;=\;2.08$, 그리고 $A_{\$\mid$}\;=\;131\;G$의 전자상자성공명 파라미터를 가지는 축대칭 이방성 신호로 바뀐다. 전자상자성공명 분석 결과로부터 수착된 구리 이온이 찌그러진 $CuO_{6}$ 팔면체 구조의 외부권착물을 형성함을 알 수 있다. 수착 실험에서 용액의 pH가 증가함에 따라 수착된 구리의 양은 증가하였다. 그러나 등방성 신호는 수착된 구리의 양에 단순 비례하지는 않았다. 수착된 구리 이온이 높은 pH조건에서 표면 침전을 형성함을 가정함으로써 이러한 불일치를 해소할 수 있다. EXAFS 결과로부터 이러한 표면 침전의 존재를 확인할 수 있었다. 최적의 fitting 결과는 수착된 구리 이온이 $1.96\;{\AA}$ 거리에 결합된 4개의 수평 방향 산소와 $2.31\;{\AA}$ 거리에 결합된 2개의 축 방향 산소로 이뤄진 첫 번째 산소 껍질과 함께 $3.08\;{\AA}$ 거리에 평균 6.8개의 구리 이웃 원자들을 가짐을 보여준다. 이 연구는 캐올리나이트에 수착된 구리 이온의 국소 환경이 용액의 pH와 표면 농도에 따라 변화하며 그러한 변화를 연구하는데 전자상자성공명과 EXAFS가 효과적으로 활용될 수 있음을 보여 준다.

Keywords

References

  1. Alloway, B.J. (1995) Heavy Metals in Soils. Blackie Academic & Professional, London.
  2. Asbrink S. and Norrby, L.J. (1970) A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.'s. Acta Crystallographica B 26, 8-15.
  3. Bahranowski, K., Dula, R., Labanowska, M., and Serwicka, E.M. (1996) ESR study of Cu centers supported on Al-, Ti-, and Zr-pillared montmorillonite clays. Applied Spectroscopy 50, 1439-1445.
  4. Bassetti, V., Burlamacchi, L., and Martini, G. (1979) Use of paramagnetic probes for the study of liquid adsorbed on porous supports. Copper(II) in water solution. Journal of the American Chemical Society 101, 5471-5477.
  5. Brindley, G.W. and Brown, G. (1980) Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society, London.
  6. Brown, G.E.Jr., Calas, G., Waychunas, G.A., and Petiau, J. (1988) X-ray absorption spectroscopy and its application in mineralogy and geochemistry. In: Spectroscopic Methods in Mineralogy and Geology, Vol.18 (Ed. F.C. Hawthorne), pp.431-512. Mineralogical Society of America.
  7. Cheah, S.-F., Brown, G.E.Jr., and Parks, G.A. (1998) XAFS spectroscopy study of Cu(II) sorption on amorphous SiO2 and $\gamma$-Al2O3: Effect of substrate and time on sorption complexes. Journal of Colloid and Interface Science 208, 110-128.
  8. Cox, P.A. (1995) The Elements on Earth: Inorganic Chemistry in the Environment. Oxford University Press, Oxford.
  9. Goodman, B.A. and Hall, P.L. (1995) Electron paramagnetic resonance spectroscopy. In: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, (Ed. M.J. Wilson), pp.173-225. Chapman & Hall, London.
  10. Hayes, K.F. and Leckie, J.O. (1987) Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science 115, 564-572.
  11. Hayes, K.F., Roe, A.L., Brown, G.E.Jr., Hodgson, K.O., Leckie, J.O., and Parks, G.A. (1987) In-situ X-ray absorption study of surface complexes: Selenium oxyanions on $\alpha$-FeOOH. Science 238, 783-786.
  12. Hyun, S.P., Cho, Y.H., and Hahn, P.S. (2003) An electron paramagnetic resonance study of Cu(II) sorbed on quartz. Journal of Colloid and Interface Science 257, 179-187.
  13. Hyun, S.P., Cho. Y.H., Kim, S.J., and Hahn, P.S. (2000) Cu(II) sorption mechanism on montmorillonite: An electron paramagnetic resonance study. Journal of Colloid and Interface Science 222, 254-261.
  14. McBride, M.B., Fraser, A.R., and McHardy, W.J. (1984) $Cu^{2+}$ interaction with microcrystalline gibbsite. Evidence for oriented chemisorbed copper ions. Clays and Clay Minerals 32, 12-18.
  15. Morton, J.D., Semrau, J.D., and Hayes, K.F. (2001) An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochimica et Cosmochimica Acta 65, 2709-2722.
  16. Motschi, H. (1984) Correlation of EPR-parameters with thermodynamic stability constants for copper (II) complexes. Cu(II)-EPR as a probe for the surface complexation at the water/oxide interface. Colloids and Surfaces 9, 333-347.
  17. Muller, J.-P., Ildefonse, P., and Calas, G. (1990) Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico. Clays and Clay Minerals 38, 600-608.
  18. Muller, J.-P., Manceau, A., Calas, G., Allard, T., Ildefonse, P., and Hazemann, J.-L. (1995) Crystal chemistry of kaolinite and Fe-Mn oxides: Relation with formation conditions of low temperature systems. American Journal of Science 295, 1115-1155.
  19. Parish, R.V. (1990) NMR, NQR, EPR, and Mssbauer Spectroscopy in Inorganic Chemistry. Ellis Horwood, New York.
  20. Pruett, R.J. and Webb, H.L. (1993) Sampling and analysis of KGa-1b well crystallized kaolin source clay. Clays and Clay Minerals 41, 514-519.
  21. Xia, K., Mehadi, A., Taylor, R.W., and Bleam, W.F. (1997) X-ray absorption and electron paramagnetic resonance studies of Cu(II) sorbed to silica: Surface-induced precipitation at low surface coverages. Journal of Colloid and Interface Science 185, 252-257. https://doi.org/10.1006/jcis.1996.4590